Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112113
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.creatorWang, Hen_US
dc.creatorSun, Qen_US
dc.creatorWang, Sen_US
dc.date.accessioned2025-03-27T03:14:37Z-
dc.date.available2025-03-27T03:14:37Z-
dc.identifier.issn0894-069Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/112113-
dc.language.isoenen_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en_US
dc.rights© 2024 The Author(s). Naval Research Logistics published by Wiley Periodicals LLC.en_US
dc.rightsThe following publication Wang, H., Sun, Q., & Wang, S.. (2025). Data-driven models for optimizing second-hand ship trading strategies under contextual information. Naval Research Logistics (NRL), 72(2), 275-291 is available at https://doi.org/10.1002/nav.22223.en_US
dc.subjectData-driven optimizationen_US
dc.subjectSecond-hand shipen_US
dc.subjectStochastic programmingen_US
dc.subjectWeighted sample average approximationen_US
dc.titleData-driven models for optimizing second-hand ship trading strategies under contextual informationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage275en_US
dc.identifier.epage291en_US
dc.identifier.volume72en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1002/nav.22223en_US
dcterms.abstractSecond-hand ship online trading platforms (SOTPs) are reshaping the traditional broker-reliant second-hand ship transactions. This study investigates the decision-making process within the context of SOTP from a shipowner's perspective. We introduce a comprehensive framework tailored to guide shipowners in strategically navigating pivotal decisions, including the adoption of SOTP and the specification of optimal minimum starting prices while leveraging the value of online transaction data. Our approach is rooted in data-driven decision-making under uncertainty, employing quantile regression forests (QRF), and weighted sample average approximation (wSAA). The latter encompasses a predictive wSAA model, a local wSAA model, and a residual-based wSAA model. Each of these models provides a unique perspective on weight determination within the wSAA paradigm. To validate our proposed approach, we draw upon extensive real-world data sourced from a Chinese SOTP between January 2017 and May 2023. Within this context, our numerical experiments pursue three primary objectives: (i) identifying performance disparities among the models, (ii) assessing the value of contextual information, and (iii) evaluating the optimal strategy for shipowners. Our findings not only underscore the efficacy of our approaches but also provide invaluable insights into the adoption of SOTPs, establishing a robust foundation for informed decision-making in the continually evolving SOTP landscape.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNaval research logistics, Mar. 2025, v. 72, no. 2, p. 275-291en_US
dcterms.isPartOfNaval research logisticsen_US
dcterms.issued2025-03-
dc.identifier.scopus2-s2.0-85201529742-
dc.identifier.eissn1520-6750en_US
dc.description.validate202503 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Data‐driven_Models_Optimizing.pdf1.94 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

3
Citations as of Apr 1, 2025

Downloads

3
Citations as of Apr 1, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.