Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112110
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.contributorDepartment of Biomedical Engineering-
dc.contributorResearch Centre for Nanoscience and Nanotechnology-
dc.creatorHao, J-
dc.creatorMalek, NANN-
dc.creatorKamaruddin, WHA-
dc.creatorLi, J-
dc.date.accessioned2025-03-27T03:14:36Z-
dc.date.available2025-03-27T03:14:36Z-
dc.identifier.issn2751-7438-
dc.identifier.urihttp://hdl.handle.net/10397/112110-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rights© 2024 The Authors. BMEMat published by John Wiley & Sons Australia, Ltd on behalf of Shandong University.en_US
dc.rightsThe following publication Hao, J., Malek, N. A. N. N., Kamaruddin, W. H. A., & Li, J. (2024). Breaking piezoelectric limits of molecules for biodegradable implants. BMEMat, 2(2), e12087 is available at https://doi.org/10.1002/bmm2.12087.en_US
dc.subjectBiodegradable implantsen_US
dc.subjectMolecular ferroelectricen_US
dc.subjectPiezoelectric biosensorsen_US
dc.subjectSelf-powered electronicsen_US
dc.subjectTransient bioelectronicsen_US
dc.titleBreaking piezoelectric limits of molecules for biodegradable implantsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume2-
dc.identifier.issue2-
dc.identifier.doi10.1002/bmm2.12087-
dcterms.abstractIn the quest for optimizing biodegradable implants, the exploration of piezoelectric materials stands at the forefront of biomedical engineering research. Traditional piezoelectric materials often suffer from limitations in biocompatibility and biodegradability, significantly impeding their in vivo study and further biomedical application. By leveraging molecular engineering and structural design, a recent innovative approach transcends the conventional piezoelectric limits of the molecules designed for biodegradable implants. The biodegradable molecular piezoelectric implants may open new avenues for their applications in bioenergy harvesting/sensing, implanted electronics, transient medical devices and tissue regeneration.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationBMEMat, June 2024, v. 2, no. 2, e12087-
dcterms.isPartOfBMEMat-
dcterms.issued2024-06-
dc.identifier.scopus2-s2.0-85200220742-
dc.identifier.eissn2751-7446-
dc.identifier.artne12087-
dc.description.validate202503 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextTaishan Scholars Program of Shandong Provinceen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hao_Breaking_Piezoelectric_Limits.pdf586.24 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

5
Citations as of Apr 7, 2025

Downloads

3
Citations as of Apr 7, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.