Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/112011
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.contributorDepartment of Computingen_US
dc.creatorZang, Yen_US
dc.creatorRen, Len_US
dc.creatorWu, Jen_US
dc.creatorXiao, Yen_US
dc.creatorHu, Ren_US
dc.date.accessioned2025-03-21T02:47:00Z-
dc.date.available2025-03-21T02:47:00Z-
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://hdl.handle.net/10397/112011-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectGraph neural networken_US
dc.subjectPower relationship miningen_US
dc.subjectSocial networken_US
dc.titlePower on graph : mining power relationship via user interaction correlationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume270en_US
dc.identifier.doi10.1016/j.eswa.2024.126348en_US
dcterms.abstractPower relationships cannot be ignored in the social network, and mining them benefits a wide range of valuable applications, such as company management and leadership analysis. The focus of existing approaches is on how to explore social relationships more efficiently while ignoring the uniqueness of power relationships. In this paper, we first identify two unique challenges in power relationship mining: (1) User behavior. Communication between a leader and different subordinates tends to be highly variable. (2) Interaction structure. Power relationships are often interconnected like a pyramid shape but are overlapped in social interactions. Then we find and verify the existence of significant properties of power relationships’ correlation patterns on social networks to overcome the above challenges. Then a novel GNN model PRM-GNN to mine power relationships efficiently is proposed. We validate and illustrate the effectiveness and explainability of PRM-GNN using two real-world datasets. PRM-GNN achieves a 3.0% improvement in the F1-score compared to the State-of-the-art baseline on the Coauthor dataset and a 7.3% improvement on the Enron dataset.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationExpert systems with applications, 25 Apr. 2025, v. 270, 126348en_US
dcterms.isPartOfExpert systems with applicationsen_US
dcterms.issued2025-04-25-
dc.identifier.eissn1873-6793en_US
dc.identifier.artn126348en_US
dc.description.validate202503 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3456-
dc.identifier.SubFormID50155-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-04-25en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-04-25
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.