Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/111889
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Mechanical Engineering | en_US |
| dc.contributor | Research Institute for Advanced Manufacturing | en_US |
| dc.contributor | Research Institute for Smart Energy | en_US |
| dc.creator | Zou, X | en_US |
| dc.creator | Lu, Q | en_US |
| dc.creator | Wu, L | en_US |
| dc.creator | Zhang, K | en_US |
| dc.creator | Tang, M | en_US |
| dc.creator | Xie, H | en_US |
| dc.creator | Zhang, X | en_US |
| dc.creator | Shao, Z | en_US |
| dc.creator | An, L | en_US |
| dc.date.accessioned | 2025-03-18T07:02:35Z | - |
| dc.date.available | 2025-03-18T07:02:35Z | - |
| dc.identifier.issn | 1433-7851 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/111889 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley-VCH Verlag GmbH & Co. KGaA | en_US |
| dc.subject | Oxygen electrocatalysts | en_US |
| dc.subject | Redox chemistry | en_US |
| dc.subject | Redox mediators | en_US |
| dc.subject | Stability | en_US |
| dc.subject | Zinc-air batteries | en_US |
| dc.title | I₃⁻ : mediated oxygen evolution activities to boost rechargeable zinc-air battery performance with low charging voltage and long cycling life | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 64 | en_US |
| dc.identifier.issue | 4 | en_US |
| dc.identifier.doi | 10.1002/anie.202416235 | en_US |
| dcterms.abstract | An effective strategy to facilitate oxygen redox chemistry in metal-air batteries is to introduce a redox mediator into the liquid electrolyte. The rational utilization of redox mediators to accelerate the charging kinetics while ensuring the long lifetime of alkaline Zn-air batteries is challenging. Here, we apply commercial acetylene black catalysts to achieve an I3−-mediated Zn-air battery by using ZnI2 additives that provide I3− to accelerate the cathodic redox chemistry and regulate the uniform deposition of Zn2+ on the anode. The Zn-air battery performs an ultra-long cycle life of over 600 h at 5 mA cm−2 with a final charge voltage of 1.87 V. We demonstrate that I− mainly generates I3− on the surface of carbon catalysts during the electrochemically charging process, which can further chemically react with OH− to generate oxygen and further revert to I−, thus obtaining a stable electrochemical system. This work offers a strategy to simultaneously improve the cycling life and reduce the charging voltage of Zn-air batteries through redox mediator methods. | en_US |
| dcterms.abstract | Graphical abstract: [Figure not available: see fulltext.] | en_US |
| dcterms.accessRights | embargoed access | en_US |
| dcterms.bibliographicCitation | Angewandte chemie international edition, 21 Jan. 2025, v. 64, no. 4, e202416235 | en_US |
| dcterms.isPartOf | Angewandte chemie international edition | en_US |
| dcterms.issued | 2025-01-21 | - |
| dc.identifier.eissn | 1521-3773 | en_US |
| dc.identifier.artn | e202416235 | en_US |
| dc.description.validate | 202503 bcch | en_US |
| dc.description.oa | Not applicable | en_US |
| dc.identifier.FolderNumber | a3450, a3814d | - |
| dc.identifier.SubFormID | 50149, 51216 | - |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | National Natural Science Foundation of China; The Hong Kong Polytechnic University | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.date.embargo | 2026-01-21 | en_US |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



