Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111889
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorZou, Xen_US
dc.creatorLu, Qen_US
dc.creatorWu, Len_US
dc.creatorZhang, Ken_US
dc.creatorTang, Men_US
dc.creatorXie, Hen_US
dc.creatorZhang, Xen_US
dc.creatorShao, Zen_US
dc.creatorAn, Len_US
dc.date.accessioned2025-03-18T07:02:35Z-
dc.date.available2025-03-18T07:02:35Z-
dc.identifier.issn1433-7851en_US
dc.identifier.urihttp://hdl.handle.net/10397/111889-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.subjectOxygen electrocatalystsen_US
dc.subjectRedox chemistryen_US
dc.subjectRedox mediatorsen_US
dc.subjectStabilityen_US
dc.subjectZinc-air batteriesen_US
dc.titleI₃⁻ : mediated oxygen evolution activities to boost rechargeable zinc-air battery performance with low charging voltage and long cycling lifeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume64en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1002/anie.202416235en_US
dcterms.abstractAn effective strategy to facilitate oxygen redox chemistry in metal-air batteries is to introduce a redox mediator into the liquid electrolyte. The rational utilization of redox mediators to accelerate the charging kinetics while ensuring the long lifetime of alkaline Zn-air batteries is challenging. Here, we apply commercial acetylene black catalysts to achieve an I3−-mediated Zn-air battery by using ZnI2 additives that provide I3− to accelerate the cathodic redox chemistry and regulate the uniform deposition of Zn2+ on the anode. The Zn-air battery performs an ultra-long cycle life of over 600 h at 5 mA cm−2 with a final charge voltage of 1.87 V. We demonstrate that I− mainly generates I3− on the surface of carbon catalysts during the electrochemically charging process, which can further chemically react with OH− to generate oxygen and further revert to I−, thus obtaining a stable electrochemical system. This work offers a strategy to simultaneously improve the cycling life and reduce the charging voltage of Zn-air batteries through redox mediator methods.en_US
dcterms.abstractGraphical abstract: [Figure not available: see fulltext.]en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAngewandte chemie international edition, 21 Jan. 2025, v. 64, no. 4, e202416235en_US
dcterms.isPartOfAngewandte chemie international editionen_US
dcterms.issued2025-01-21-
dc.identifier.eissn1521-3773en_US
dc.identifier.artne202416235en_US
dc.description.validate202503 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3450, a3814d-
dc.identifier.SubFormID50149, 51216-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-01-21en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-01-21
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

19
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.