Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111843
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.contributorMainland Affairs Office-
dc.creatorWang, Jen_US
dc.creatorYao, Wen_US
dc.date.accessioned2025-03-18T01:13:08Z-
dc.date.available2025-03-18T01:13:08Z-
dc.identifier.issn1682-1750en_US
dc.identifier.urihttp://hdl.handle.net/10397/111843-
dc.language.isoenen_US
dc.publisherCopernicus GmbHen_US
dc.rights© Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Wang, J. and Yao, W.: An End-to-End Geometric Characterization-aware Semantic Instance Segmentation Network for ALS Point Clouds, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 435–442 is available at https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-435-2024.en_US
dc.subjectAirborne Laser Scanning (ALS)en_US
dc.subjectDeep learningen_US
dc.subjectGeometric characterizationen_US
dc.subjectPoint cloudsen_US
dc.subjectSemantic instance segmentationen_US
dc.titleAn end-to-end geometric characterization-aware semantic instance segmentation network for ALS point cloudsen_US
dc.typeConference Paperen_US
dc.identifier.spage435en_US
dc.identifier.epage442en_US
dc.identifier.volumeXLVIII-2-2024en_US
dc.identifier.doi10.5194/isprs-archives-XLVIII-2-2024-435-2024en_US
dcterms.abstractSemantic instance segmentation from scenes, serving as a crucial role for 3D modelling and scene understanding. Conducting semantic segmentation before grouping instances is adopted by the existing state-of-the-art methods. However, without additional refinement, semantic errors will fully propagate into the grouping stage, resulting in low overlap with the ground truth instance. Furthermore, the proposed methods focused on indoor level scenes, which are limited when directly applied to large-scale outdoor Airborne Laser Scanning (ALS) point clouds. Numerous instances, significant object density and scale variations make ALS point clouds distinct from indoor data. In order to address the problems, we proposed a geometric characterization-aware semantic instance segmentation network, which utilized both semantic and objectness score to select potential points for grouping. And in point cloud feature learning stage, hand-craft geometry features are taken as input for geometric characterization awareness. Moreover, to address errors propagated from previous modules after grouping, we have additionally designed a per-instance refinement module. To assess semantic instance segmentation, we conducted experiments on an open-source dataset. Additionally, we performed semantic segmentation experiments to evaluate the performance of our proposed point cloud feature learning method.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational archives of the photogrammetry, remote sensing and spatial information sciences, 2024, v. XLVIII-2-2024, p. 435-442en_US
dcterms.isPartOfInternational archives of the photogrammetry, remote sensing and spatial information sciencesen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85197349798-
dc.identifier.eissn2194-9034en_US
dc.description.validate202503 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS, a3797a-
dc.identifier.SubFormID51121-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
isprs-archives-XLVIII-2-2024-435-2024.pdf1.47 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

5
Citations as of Apr 14, 2025

Downloads

4
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.