Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111806
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorPhotonics Research Instituteen_US
dc.contributorDepartment of Applied Physicsen_US
dc.creatorDu, Yen_US
dc.creatorZou, Yen_US
dc.creatorZhu, Ben_US
dc.creatorJiang, Hen_US
dc.creatorChai, Yen_US
dc.creatorTsoi, CCen_US
dc.creatorZhang, Xen_US
dc.creatorWang, Cen_US
dc.date.accessioned2025-03-14T08:11:48Z-
dc.date.available2025-03-14T08:11:48Z-
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://hdl.handle.net/10397/111806-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2024 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © 2024 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.4c14350.en_US
dc.subjectLithium niobateen_US
dc.subjectPhotonic integrated circuitsen_US
dc.subjectSiliconen_US
dc.subjectWafer bondingen_US
dc.subjectWaveguideen_US
dc.titleAsymmetric proton-exchange-enhanced lithium niobate and silicon low-temperature direct bonding with an ultrathin heterogeneous interfaceen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Asymmetric Proton-Exchange-Enhanced Lithium Niobate and Silicon Low-Temperature Direct Bonding with Ultrathin Heterogeneous Interfaceen_US
dc.identifier.spage64287en_US
dc.identifier.epage64296en_US
dc.identifier.volume16en_US
dc.identifier.issue46en_US
dc.identifier.doi10.1021/acsami.4c14350en_US
dcterms.abstractThe integration of lithium niobate (LiNbO3 or LN) and silicon (Si) has emerged as a promising heterogeneous platform for microelectromechanical systems (MEMSs) and photonic integrated circuits (PICs). Particularly, the lithium niobate on silicon (LNOS) architecture leverages the superior piezo-optomechanical properties of LN, making it compatible with superconducting circuits and quantum systems. This opens an avenue for the development of advanced quantum sensors and processors. However, existing LN and Si bonding methods suffer from inherent limitations, such as low interfacial strength and the formation of thick, amorphous interlayers. In this work, we present an asymmetric surface activation strategy to address these challenges. By employing proton-exchange-enhanced chemical activation on the LN surface and oxygen plasma treatment on the Si side, we have achieved remarkable bonding strengths of up to 10 MPa at a moderate annealing temperature of 150 °C. Notably, the bonding mechanism in our approach differs from that in conventional diffusion-based processes. Here, the dehydration condensation of surface functional groups results in an exceptionally thin interfacial layer, less than 2 nm thick, without the presence of amorphous LN. This innovative fabrication method for LNOS demonstrates superior reliability, piezoelectric performance, thermal management capabilities, and optical transmission qualities, paving the way for cutting-edge photonic and quantum applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS applied materials and interfaces, 20 Nov. 2024, v. 16, no. 46, p. 64287-64296en_US
dcterms.isPartOfACS applied materials and interfacesen_US
dcterms.issued2024-11-20-
dc.identifier.eissn1944-8252en_US
dc.description.validate202503 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3446-
dc.identifier.SubFormID50141-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Du_Asymmetric_Proton_Exchange.pdfPre-Published version2.69 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

17
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.