Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111729
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.contributorSchool of Accounting and Finance-
dc.contributorDepartment of Logistics and Maritime Studies-
dc.contributorDepartment of Building and Real Estate-
dc.creatorGuan, Y-
dc.creatorTian, X-
dc.creatorJin, S-
dc.creatorGao, K-
dc.creatorYi, W-
dc.creatorJin, Y-
dc.creatorHu, X-
dc.creatorWang, S-
dc.date.accessioned2025-03-13T02:25:02Z-
dc.date.available2025-03-13T02:25:02Z-
dc.identifier.urihttp://hdl.handle.net/10397/111729-
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rights© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)en_US
dc.rightsThe following publication Yanxia Guan, Xuecheng Tian, Sheng Jin, Kun Gao, Wen Yi, Yong Jin, Xiaosong Hu, Shuaian Wang. Data-driven optimization for rebalancing shared electric scooters[J]. Electronic Research Archive, 2024, 32(9): 5377-5391 is available at https://doi.org/10.3934/ERA.2024249.en_US
dc.subjectData-driven optimizationen_US
dc.subjectRebalancing problemen_US
dc.subjectShared electric scootersen_US
dc.subjectUncertain user demanden_US
dc.titleData-driven optimization for rebalancing shared electric scootersen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage5377-
dc.identifier.epage5391-
dc.identifier.volume32-
dc.identifier.issue9-
dc.identifier.doi10.3934/ERA.2024249-
dcterms.abstractShared electric scooters have become a popular and flexible transportation mode in recent years. However, managing these systems, especially the rebalancing of scooters, poses significant challenges due to the unpredictable nature of user demand. To tackle this issue, we developed a stochastic optimization model (M0) aimed at minimizing transportation costs and penalties associated with unmet demand. To solve this model, we initially introduced a mean-value optimization model (M1), which uses average historical values for user demand. Subsequently, to capture the variability and uncertainty more accurately, we proposed a data-driven optimization model (M2) that uses the empirical distribution of historical data. Through computational experiments, we assessed both models’ performance. The results consistently showed that M2 outperformed M1, effectively managing stochastic demand across various scenarios. Additionally, sensitivity analyses confirmed the adaptability of M2. Our findings offer practical insights for improving the efficiency of shared electric scooter systems under uncertain demand conditions.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationElectronic research archive, 2024, v. 32, no. 9, p. 5377-5391-
dcterms.isPartOfElectronic research archive-
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85205771689-
dc.identifier.eissn2688-1594-
dc.description.validate202502 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.fundingTextJPI Urban Europe and Energimyndighetenen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
i116_10.3934_era.2024249.pdf528.77 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

10
Citations as of Apr 14, 2025

Downloads

2
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.