Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111706
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineering-
dc.creatorMeng, H-
dc.creatorMak, B-
dc.creatorMak, MW-
dc.creatorFung, H-
dc.creatorGong, X-
dc.creatorKwok, T-
dc.creatorLiu, X-
dc.creatorMok, V-
dc.creatorWong, P-
dc.creatorWoo, J-
dc.creatorWu, X-
dc.creatorWong, KH-
dc.creatorXu, SS-
dc.creatorZheng, N-
dc.creatorHuang, R-
dc.creatorKang, J-
dc.creatorKe, X-
dc.creatorLi, J-
dc.creatorLi, J-
dc.creatorWang, Y-
dc.date.accessioned2025-03-13T02:22:09Z-
dc.date.available2025-03-13T02:22:09Z-
dc.identifier.urihttp://hdl.handle.net/10397/111706-
dc.description24th Annual Conference of the International Speech Communication Association, INTERSPEECH 2023, Dublin, Ireland, August 20-24, 2023en_US
dc.language.isoenen_US
dc.publisherInternational Speech Communication Associationen_US
dc.rightsCopyright © 2023 ISCAen_US
dc.rightsThe following publication Meng, H., Mak, B., Mak, M.-W., Fung, H., Gong, X., Kwok, T., Liu, X., Mok, V., Wong, P., Woo, J., Wu, X., Wong, K.H., Xu, S., Zheng, N., Huang, R., Kang, J., Ke, X., Li, J., Li, J., Wang, Y. (2023) Integrated and Enhanced Pipeline System to Support Spoken Language Analytics for Screening Neurocognitive Disorders. Proc. Interspeech 2023, 1713-1717 is available at https://doi.org/10.21437/Interspeech.2023-2249.en_US
dc.titleIntegrated and enhanced pipeline system to support spoken language analytics for screening neurocognitive disordersen_US
dc.typeConference Paperen_US
dc.identifier.spage1713-
dc.identifier.epage1717-
dc.identifier.doi10.21437/Interspeech.2023-2249-
dcterms.abstractThis paper presents an enhanced pipeline system for automated screening of neurocognitive disorders, e.g. Alzheimer's Disease (AD), using spoken language technologies. To ensure local relevance, the pipeline is applied to two-way interactions between clinical assessors and older adult participants in spoken Cantonese, the predominant language used in Hong Kong. The pipeline includes: (i) Speaker diarization using speaker-turn-aware scoring to capture the temporal structure of conversations. (ii) ASR using XLS-R wav2vec 2.0 models further pre-trained on Cantonese speech data and fine-tuned. (iii) Language modelling using RoBERTa with further fine-tuning. (iv) AD screening with neural network classification. A reference benchmark is obtained using the ADReSS corpus where no diarization is needed, and the partial pipeline attained a competitive detection accuracy of 87.5%.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH 2023, p. 1713-1717-
dcterms.issued2023-
dc.identifier.scopus2-s2.0-85171578221-
dc.relation.conferenceConference of the International Speech Communication Association [INTERSPEECH]-
dc.description.validate202503 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
meng23d_interspeech.pdf174.75 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

6
Citations as of Apr 14, 2025

Downloads

5
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.