Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111689
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorSun, J-
dc.date.accessioned2025-03-13T02:22:02Z-
dc.date.available2025-03-13T02:22:02Z-
dc.identifier.issn1292-8119-
dc.identifier.urihttp://hdl.handle.net/10397/111689-
dc.language.isoenen_US
dc.publisherEDP Sciencesen_US
dc.rights© EDP Sciences, SMAI 2017en_US
dc.rightsThe original publication is available at https://www.esaim-cocv.org/.en_US
dc.rightsThe following publication Sun, J. (2017). Mean-Field stochastic Linear Quadratic optimal control problems: Open-loop solvabilities. ESAIM: COCV, 23(3), 1099-1127 is available at https://doi.org/10.1051/cocv/2016023.en_US
dc.subjectFeedback representationen_US
dc.subjectFinitenessen_US
dc.subjectLinear quadratic optimal controlen_US
dc.subjectMean-field stochastic differential equationen_US
dc.subjectOpen-loop solvabilityen_US
dc.subjectRiccati equationen_US
dc.titleMean-field stochastic linear quadratic optimal control problems : open-loop solvabilitiesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1099-
dc.identifier.epage1127-
dc.identifier.volume23-
dc.identifier.issue3-
dc.identifier.doi10.1051/cocv/2016023-
dcterms.abstractThis paper is concerned with a mean-field linear quadratic (LQ, for short) optimal control problem with deterministic coefficients. It is shown that convexity of the cost functional is necessary for the finiteness of the mean-field LQ problem, whereas uniform convexity of the cost functional is sufficient for the open-loop solvability of the problem. By considering a family of uniformly convex cost functionals, a characterization of the finiteness of the problem is derived and a minimizing sequence, whose convergence is equivalent to the open-loop solvability of the problem, is constructed. Then, it is proved that the uniform convexity of the cost functional is equivalent to the solvability of two coupled differential Riccati equations and the unique open-loop optimal control admits a state feedback representation in the case that the cost functional is uniformly convex. Finally, some examples are presented to illustrate the theory developed.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationESAIM. Control, optimisation and calculus of variations, July-Sept 2017, v. 23, no. 3, p. 1099-1127-
dcterms.isPartOfESAIM. Control, optimisation and calculus of variations-
dcterms.issued2017-07-
dc.identifier.scopus2-s2.0-85019549774-
dc.identifier.eissn1262-3377-
dc.description.validate202503 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextDr. Xun Lien_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
cocv160023-s.pdf341.76 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

5
Citations as of Apr 14, 2025

Downloads

1
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

39
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.