Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111610
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, Yen_US
dc.creatorXu, ZQen_US
dc.creatorZhou, XYen_US
dc.date.accessioned2025-03-03T08:36:53Z-
dc.date.available2025-03-03T08:36:53Z-
dc.identifier.issn0949-2984en_US
dc.identifier.urihttp://hdl.handle.net/10397/111610-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights©Springer-Verlag GmbH Germany, part of Springer Nature 2023en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00780-023-00512-2.en_US
dc.subjectCalculus of variationsen_US
dc.subjectIntractable claimen_US
dc.subjectQuantile formulationen_US
dc.subjectRank-dependent utilityen_US
dc.subjectRobust modelen_US
dc.subjectVariational inequalitiesen_US
dc.titleRobust utility maximisation with intractable claimsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author's file: Robust utility maximization with intractable claimsen_US
dc.identifier.spage985en_US
dc.identifier.epage1015en_US
dc.identifier.volume27en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1007/s00780-023-00512-2en_US
dcterms.abstractWe study a continuous-time expected utility maximisation problem where the investor at maturity receives the value of a contingent claim in addition to the investment payoff from the financial market. The investor knows nothing about the claim other than its probability distribution; hence the name “intractable claim”. In view of the lack of necessary information about the claim, we consider a robust formulation to maximise her utility in the worst scenario. We apply the quantile formulation to solve the problem, express the quantile function of the optimal terminal investment income as the solution of certain variational inequalities of ordinary differential equations, and obtain the resulting optimal trading strategy. In the case of exponential utility, the problem reduces to a (non-robust) rank-dependent utility maximisation with probability distortion whose solution is available in the literature. The results can also be used to determine the utility indifference price of the intractable claim.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationFinance and stochastics, Oct. 2023, v. 27, no. 4, p. 985-1015en_US
dcterms.isPartOfFinance and stochasticsen_US
dcterms.issued2023-10-
dc.identifier.scopus2-s2.0-85173941837-
dc.identifier.eissn1432-1122en_US
dc.description.validate202503 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3419c-
dc.identifier.SubFormID50090-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Robust_Utility_Maximisation.pdfPre-Published version1.09 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

16
Citations as of Apr 14, 2025

Downloads

6
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.