Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111609
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorHu, Yen_US
dc.creatorShi, Xen_US
dc.creatorXu, ZQen_US
dc.date.accessioned2025-03-03T08:36:51Z-
dc.date.available2025-03-03T08:36:51Z-
dc.identifier.issn2156-8472en_US
dc.identifier.urihttp://hdl.handle.net/10397/111609-
dc.language.isoenen_US
dc.publisherAIMS Pressen_US
dc.rightsMCRF is a publication of the American Institute of Mathematical Sciences. All rights reserved.en_US
dc.rightsThis is the version of the article before peer review or editing, as submitted by an author to Mathematical control and related fields (https://www.aimsciences.org/mcrf). AIMS is not responsible for any errors or omissions in this version of the manuscript, or any version derived from it.en_US
dc.rightsThe Version of Record is available at https://doi.org/10.3934/mcrf.2023021.en_US
dc.subjectAsset-liability managementen_US
dc.subjectBSDEen_US
dc.subjectMean-varianceen_US
dc.subjectNon-homogeneous stochastic LQ problemen_US
dc.subjectRegime switchingen_US
dc.subjectUnbounded coefficientsen_US
dc.titleNon-homogeneous stochastic LQ control with regime switching and random coefficientsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage671en_US
dc.identifier.epage694en_US
dc.identifier.volume14en_US
dc.identifier.issue2en_US
dc.identifier.doi10.3934/mcrf.2023021en_US
dcterms.abstractThis paper is concerned with a general non-homogeneous stochastic linear quadratic (LQ) control problem with regime switching and random coefficients. We obtain the explicit optimal state feedback control and optimal value for this problem in terms of two systems of backward stochastic differential equations (BSDEs): one is the famous stochastic Riccati equation and the other one is a new linear multi-dimensional BSDE with all coefficients being unbounded. The existence and uniqueness of the solutions to these two systems of BSDEs are proved by means of BMO martingales and contraction mapping method. At last, the theory is applied to study an asset-liability management problem under the mean-variance criteria.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematical control and related fields, June 2024, v. 14, no. 2, p. 671-694en_US
dcterms.isPartOfMathematical control and related fieldsen_US
dcterms.issued2024-06-
dc.identifier.scopus2-s2.0-85190260353-
dc.identifier.eissn2156-8499en_US
dc.description.validate202503 bcchen_US
dc.description.oaAuthor’s Originalen_US
dc.identifier.FolderNumbera3419c-
dc.identifier.SubFormID50088-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AO)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hu_Non-homogeneous_Stochastic_LQ.pdfPreprint version889.61 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Author’s Original
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

10
Citations as of Apr 14, 2025

Downloads

3
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.