Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111593
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorHuang, Z-
dc.creatorSze, NS-
dc.creatorZheng, R-
dc.date.accessioned2025-03-03T06:02:36Z-
dc.date.available2025-03-03T06:02:36Z-
dc.identifier.issn0008-414X-
dc.identifier.urihttp://hdl.handle.net/10397/111593-
dc.language.isoenen_US
dc.publisherCambridge University Pressen_US
dc.rights© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Huang, Z., Sze, N.-S., & Zheng, R. (2025). Linear maps preserving $(p,k)$-norms of tensor products of matrices. Canadian Journal of Mathematics, 77(1), 187–207 is available at https://doi.org/10.4153/S0008414X23000858.en_US
dc.subject(p,k) normen_US
dc.subjectKy Fan k-normen_US
dc.subjectLinear preserveren_US
dc.subjectSchatten p-normen_US
dc.subjectTensor producten_US
dc.titleLinear maps preserving (p,k)-norms of tensor products of matricesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage187-
dc.identifier.epage207-
dc.identifier.volume77-
dc.identifier.issue1-
dc.identifier.doi10.4153/S0008414X23000858-
dcterms.abstractLet m,n ≥ 2 be integers. Denote by Mn the set of n × n complex matrices and ∥⋅∥(p,k) the (p, k) norm on Mmn with a positive integer k ≤ mn and a real number p > 2. We show that a linear map ϕ ∶ Mmn → Mmn satisfies ∥ϕ(A⊗B)∥(p,k) =∥A⊗B∥(p,k) for all A∈ Mm and B ∈ Mn if and only if there exist unitary matrices U,V ∈ Mmn such that ϕ(A⊗B)=U(φ1(A)⊗φ2(B))V forall A∈ Mm andB ∈ Mn, whereφs istheidentitymaporthetranspositionmap X ↦ XT fors = 1,2.Theresultisalsoextended to multipartite systems.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCanadian journal of mathematics, 1 Feb. 2025, v. 77, no. 1, p. 187-207-
dcterms.isPartOfCanadian journal of mathematics-
dcterms.issued2025-02-01-
dc.identifier.scopus2-s2.0-85180350157-
dc.identifier.eissn1496-4279-
dc.description.validate202503 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TAen_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Science and Technology Foundation of Shenzhen City; Guangdong Basic and Applied Basic Research Foundation; PolyU Internal Research Funden_US
dc.description.pubStatusPublisheden_US
dc.description.TACUP (2023)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_Linear_Maps_Preserving.pdf407.34 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

9
Citations as of Apr 14, 2025

Downloads

6
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.