Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111443
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorHelfrecht, BA-
dc.creatorGuzman, DM-
dc.creatorOnofrio, N-
dc.creatorStrachan, AH-
dc.date.accessioned2025-02-27T04:12:27Z-
dc.date.available2025-02-27T04:12:27Z-
dc.identifier.urihttp://hdl.handle.net/10397/111443-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.rights©2017 American Physical Societyen_US
dc.rightsThe following publication Helfrecht, B. A., Guzman, D. M., Onofrio, N., & Strachan, A. H. (2017). Interactions between copper and transition metal dichalcogenides: A density functional theory study. Physical Review Materials, 1(3), 034001 is available at https://doi.org/10.1103/PhysRevMaterials.1.034001.en_US
dc.titleInteractions between copper and transition metal dichalcogenides : a density functional theory studyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume1-
dc.identifier.issue3-
dc.identifier.doi10.1103/PhysRevMaterials.1.034001-
dcterms.abstractWe characterized the interface between fcc Cu and various single-layer transition metal dichalcogenides (TMDs) using density functional theory calculations. We found that monolayer Mo, W, Nb, Ti, and V disulfides, diselenides, and ditellurides are stable on Cu(111) with binding energies higher than those of ℎ-BN and graphene. An analysis of the electronic structure of the interfaces indicates partial covalent bonding and a complex redistribution of electronic density, consisting of electron accumulation in the gap region, depletion near the Cu and TMD surfaces, and charge density oscillations within both materials. The resulting net electric dipoles significantly alter the electron work function of the Cu surface. Interestingly, capping Cu(111) surfaces with group-IV and -V TMDs leads to an increase in the work function of up to 1 eV, while group-VI TMDs can decrease the work function by up to 1 eV. Finally, the complex charge distributions at the Cu/TMD interfaces include opposing dipoles and explain the fact that net dipoles associated with Cu/TMD interfaces are comparable to or smaller than those of Cu/graphene and Cu/ℎ-BN, even though the Cu/TMD binding energies are significantly higher.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysical review materials, Aug. 2017, v. 1, no. 3, 034001-
dcterms.isPartOfPhysical review materials-
dcterms.issued2017-08-
dc.identifier.scopus2-s2.0-85059561707-
dc.identifier.eissn2475-9953-
dc.identifier.artn034001-
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextCenter for Low Energy Systems Technology (LEAST); MARCO; DARPAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
PhysRevMaterials.1.034001.pdf1.6 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

4
Citations as of Apr 14, 2025

Downloads

1
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.