Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111442
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineering-
dc.creatorShen, KC-
dc.creatorHuang, YT-
dc.creatorChung, TL-
dc.creatorTseng, ML-
dc.creatorTsai, WY-
dc.creatorSun, G-
dc.creatorTsai, DP-
dc.date.accessioned2025-02-27T04:12:27Z-
dc.date.available2025-02-27T04:12:27Z-
dc.identifier.urihttp://hdl.handle.net/10397/111442-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.rights©2019 American Physical Societyen_US
dc.rightsThe following publication Shen, K.-C., Huang, Y.-T., Chung, T. L., Tseng, M. L., Tsai, W.-Y., Sun, G., & Tsai, D. P. (2019). Giant Efficiency of Visible Second-Harmonic Light by an All-Dielectric Multiple-Quantum-Well Metasurface. Physical Review Applied, 12(6), 064056 is available at https://doi.org/10.1103/PhysRevApplied.12.064056.en_US
dc.titleGiant efficiency of visible second-harmonic light by an all-dielectric multiple-quantum-well metasurfaceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume12-
dc.identifier.issue6-
dc.identifier.doi10.1103/PhysRevApplied.12.064056-
dcterms.abstractDeveloping a high-efficiency coherent nonlinear light source is a critical step for photonic quantum technologies in signal processing, imaging, and switching. A promising approach is second-harmonic generation (SHG) via intersub-band transitions in a semiconductor quantum-well structure with a specific plasmon resonant mode of metal structures. There are, however, two significant challenges with this approach. First, limited by the conduction-band offset, the SHG wavelength based on intersub-band transitions is unlikely to extend into the visible region. Second, the high dissipative losses of plasmonic metal nanostructures could severely limit their applicability. Here we demonstrate an alternative configuration using interband excitonic transitions in an all-dielectric multiple-quantum-well metasurface capable of achieving high SHG conversion efficiency in the visible region. Taking advantage of the magnetic resonance of the multiple-quantum-well metasurface, the tightly concentrated optical field that is induced in the metasurface is responsible for boosting the conversion efficiency to about 2×10-7. This demonstration opens a viable path toward a coherent light source using SHG that is extended to the visible region and beyond with high conversion efficiency, enabling nanophotonic quantum-information applications.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysical review applied, Dec. 2019, v. 12, no. 6, 064056-
dcterms.isPartOfPhysical review applied-
dcterms.issued2019-12-
dc.identifier.scopus2-s2.0-85077240769-
dc.identifier.eissn2331-7019-
dc.identifier.artn064056-
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextShenzhen Innovation Technology D-type Project; Research Center for Applied Sciences, Academia Sinica, Taiwan; Department of Electronic and Information Engineering, The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
PhysRevApplied.12.064056.pdf2.21 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

4
Citations as of Apr 14, 2025

Downloads

3
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

27
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.