Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/111413
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Physics | - |
| dc.creator | Yan, MY | - |
| dc.creator | Li, SS | - |
| dc.creator | Yan, JM | - |
| dc.creator | Xie, L | - |
| dc.creator | Xu, M | - |
| dc.creator | Guo, L | - |
| dc.creator | Zhang, SJ | - |
| dc.creator | Gao, GY | - |
| dc.creator | Wang, FF | - |
| dc.creator | Zhang, ST | - |
| dc.creator | Wang, X | - |
| dc.creator | Chai, Y | - |
| dc.creator | Zhao, W | - |
| dc.creator | Zheng, RK | - |
| dc.date.accessioned | 2025-02-27T04:12:08Z | - |
| dc.date.available | 2025-02-27T04:12:08Z | - |
| dc.identifier.uri | http://hdl.handle.net/10397/111413 | - |
| dc.language.iso | en | en_US |
| dc.publisher | American Physical Society | en_US |
| dc.rights | ©2022 American Physical Society | en_US |
| dc.rights | The following publication Yan, M.-Y., Li, S.-S., Yan, J.-M., Xie, L., Xu, M., Guo, L., Zhang, S.-J., Gao, G.-Y., Wang, F.-F., Zhang, S.-T., Wang, X., Chai, Y., Zhao, W., & Zheng, R.-K. (2022). Reversible and Nonvolatile Manipulation of the Spin-Orbit Interaction in Ferroelectric Field-Effect Transistors Based on a Two-Dimensional Bismuth Oxychalcogenide. Physical Review Applied, 18(4), 044073 is available at https://doi.org/10.1103/PhysRevApplied.18.044073. | en_US |
| dc.title | Reversible and nonvolatile manipulation of the spin-orbit interaction in ferroelectric field-effect transistors based on a two-dimensional bismuth oxychalcogenide | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 18 | - |
| dc.identifier.issue | 4 | - |
| dc.identifier.doi | 10.1103/PhysRevApplied.18.044073 | - |
| dcterms.abstract | The spin-orbit interaction (SOI) offers a nonferromagnetic scheme to realize spin polarization through utilizing an electric field. Electrically tunable SOIs through electrostatic gates have been investigated; however, the relatively weak and volatile tunability limits their practical applications in spintronics. Here, we demonstrate the nonvolatile electric field control of the SOI via constructing ferroelectric Rashba architectures, i.e., two-dimensional Bi2O2Se/Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric field-effect transistors. The experimentally observed weak antilocalization (WAL) cusp in Bi2O2Se films implies the Rashba-type SOI that arises from the asymmetric confinement potential. Significantly, taking advantage of the switchable ferroelectric polarization, the WAL-to-weak-localization-transition trend reveals the competition between spin relaxation and the dephasing process, and the variation of carrier density leads to a reversible and nonvolatile modulation of the spin-relaxation time and the spin-splitting energy of Bi2O2Se films by this ferroelectric gating. Our work provides a scheme to achieve nonvolatile control of the Rashba SOI with the utilization of ferroelectric remanent polarization. | - |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Physical review applied, Oct. 2022, v. 18, no. 4, 044073 | - |
| dcterms.isPartOf | Physical review applied | - |
| dcterms.issued | 2022-10 | - |
| dc.identifier.scopus | 2-s2.0-85141577253 | - |
| dc.identifier.artn | 044073 | - |
| dc.description.validate | 202502 bcch | - |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | OA_Others | en_US |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | National Natural Science Foundation of China; ARC Centre of Excellence in Future Low-Energy Electronics Technologies | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| PhysRevApplied.18.044073.pdf | 5.21 MB | Adobe PDF | View/Open |
Page views
14
Citations as of Apr 14, 2025
Downloads
7
Citations as of Apr 14, 2025
SCOPUSTM
Citations
4
Citations as of Dec 19, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



