Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111402
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorDong, HW-
dc.creatorZhao, SD-
dc.creatorXiang, P-
dc.creatorWang, B-
dc.creatorZhang, C-
dc.creatorCheng, L-
dc.creatorWang, YS-
dc.creatorFang, D-
dc.date.accessioned2025-02-27T04:12:00Z-
dc.date.available2025-02-27T04:12:00Z-
dc.identifier.urihttp://hdl.handle.net/10397/111402-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.rights©2023 American Physical Societyen_US
dc.rightsThe following publication Dong, H.-W., Zhao, S.-D., Xiang, P., Wang, B., Zhang, C., Cheng, L., Wang, Y.-S., & Fang, D. (2023). Porous-Solid Metaconverters for Broadband Underwater Sound Absorption and Insulation. Physical Review Applied, 19(4), 044074 is available at https://doi.org/10.1103/PhysRevApplied.19.044074.en_US
dc.titlePorous-solid metaconverters for broadband underwater sound absorption and insulationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume19-
dc.identifier.issue4-
dc.identifier.doi10.1103/PhysRevApplied.19.044074-
dcterms.abstractExisting solid composite structures composed of several viscoelastic materials and metals mainly exploit diverse resonances, damping, and scattering to realize underwater acoustic wave functionalities. However, low-frequency broadband underwater sound absorption and insulation are still hard to capture with an acoustic coating possessing subwavelength thickness and lightweight nature simultaneously. This paper reports the systematic simulated and experimental validations of a porous-solid underwater metaconverter, consisting of a rubber layer and a topology-optimized elastic metasurface to exhibit broadband functionalities of sound absorption and insulation caused by the strong reflective and transmitted longitudinal-to-transverse wave conversion, while sustaining broadband impedance matching. Various results confirm the predicted capabilities of underwater broadband high-efficiency sound absorption (>80%) or insulation (20 dB) within the range of 2–10 kHz for a large- and limited-size sample, providing an estimate of the energy-converting effect and phenomenon. The present study provides possibilities for elastic wave energy dissipation, harvesting, and underwater acoustic stealth via metasurfaces.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysical review applied, Apr. 2023, v. 19, no. 4, 044074-
dcterms.isPartOfPhysical review applied-
dcterms.issued2023-04-
dc.identifier.scopus2-s2.0-85158826267-
dc.identifier.eissn2331-7019-
dc.identifier.artn044074-
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Beijing Institute of Technology Research Fund Program for Young Scholarsen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
PhysRevApplied.19.044074.pdf9.49 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

13
Citations as of Apr 14, 2025

Downloads

6
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

30
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.