Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111389
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorPeng, J-
dc.creatorWei, P-
dc.creatorXu, ZQ-
dc.date.accessioned2025-02-25T03:22:35Z-
dc.date.available2025-02-25T03:22:35Z-
dc.identifier.urihttp://hdl.handle.net/10397/111389-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2023 Society for Industrial and Applied Mathematics.en_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Peng, J., Wei, P., & Xu, Z. Q. (2023). Relative Growth Rate Optimization Under Behavioral Criterion. SIAM Journal on Financial Mathematics, 14(4), 1140-1174 is available at https://doi.org/10.1137/22m1496943.en_US
dc.subjectBehavioral financeen_US
dc.subjectGrowth optimal portfolioen_US
dc.subjectLog-return optimalen_US
dc.subjectPortfolio selectionen_US
dc.subjectProspect theoryen_US
dc.subjectQuantile optimizationen_US
dc.titleRelative growth rate optimization under behavioral criterionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1140-
dc.identifier.epage1174-
dc.identifier.volume14-
dc.identifier.issue4-
dc.identifier.doi10.1137/22M1496943-
dcterms.abstractThis paper studies a continuous-time optimal portfolio selection problem in a complete market for a behavioral investor whose preference is of the prospect type with probability distortion. The investor is concerned with the terminal relative growth rate (log-return) instead of absolute capital value. This model can be regarded as an extension of the classical growth optimal problem to the behavioral framework. It leads to a new type of M-shaped utility maximization problem under nonlinear Choquet expectation. Due to the presence of probability distortion, the classical stochastic control methods are not applicable. Instead, we use the martingale method, concavification, and quantile optimization techniques to derive the closed-form optimal growth rate. We find that the benchmark growth rate has a significant impact on investment behaviors. Compared to S. Zhang, H. Q. Jin, and X. Zhou [Acta Math. Sin. (Engl. Ser.), 27 (2011), pp. 255-274] where the same preference measure is applied to the terminal relative wealth, we find a new phenomenon when the investor's risk tolerance level is high and the market state is bad. In addition, our optimal wealth in every scenario is less sensitive to the pricing kernel and thus more stable than theirs.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on financial mathematics, 2023, v. 14, no. 4, p. 1140-1174-
dcterms.isPartOfSIAM journal on financial mathematics-
dcterms.issued2023-
dc.identifier.scopus2-s2.0-85179353915-
dc.identifier.eissn1945-497X-
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3419aen_US
dc.identifier.SubFormID50091en_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
22m1496943.pdf2.43 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

10
Citations as of Apr 14, 2025

Downloads

8
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.