Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111388
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorJin, Zen_US
dc.creatorXu, ZQen_US
dc.creatorZou, Ben_US
dc.date.accessioned2025-02-25T03:22:35Z-
dc.date.available2025-02-25T03:22:35Z-
dc.identifier.issn0363-0129en_US
dc.identifier.urihttp://hdl.handle.net/10397/111388-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2024 Society for Industrial and Applied Mathematics.en_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Jin, Z., Xu, Z. Q., & Zou, B. (2024). Optimal Moral-Hazard-Free Reinsurance Under Extended Distortion Premium Principles. SIAM Journal on Control and Optimization, 62(3), 1390-1416 is available at https://doi.org/10.1137/23m1556046.en_US
dc.subjectDiffusion risk modelen_US
dc.subjectDouble-obstacle problemen_US
dc.subjectIncentive compatibilityen_US
dc.subjectMoral hazarden_US
dc.subjectRuin probabilityen_US
dc.titleOptimal moral-hazard-free reinsurance under extended distortion premium principlesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1390en_US
dc.identifier.epage1416en_US
dc.identifier.volume62en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1137/23M1556046en_US
dcterms.abstractWe study an optimal reinsurance problem under a diffusion risk model for an insurer who aims to minimize the probability of lifetime ruin. To rule out moral hazard issues, we only consider moral-hazard-free reinsurance contracts by imposing the incentive compatibility constraint on indemnity functions. The reinsurance premium is calculated under an extended distortion premium principle, in which the distortion function is not necessarily concave or continuous. We first show that an optimal reinsurance contract always exists and then derive two sufficient and necessary conditions to characterize it. Due to the presence of the incentive compatibility constraint and the nonconcavity of the distortion, the optimal contract is obtained as a solution to a double obstacle problem. At last, we apply the general result to study four examples and obtain the optimal contract in (semi-)closed form.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on control and optimization, 2024, v. 62, no. 3, p. 1390-1416en_US
dcterms.isPartOfSIAM journal on control and optimizationen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85193086223-
dc.identifier.eissn1095-7138en_US
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3419a-
dc.identifier.SubFormID50089-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
23m1556046.pdf470.77 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

11
Citations as of Apr 14, 2025

Downloads

3
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

8
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.