Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111322
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorTsang, YPen_US
dc.creatorMo, DYen_US
dc.creatorChung, KTen_US
dc.creatorLee, CKMen_US
dc.date.accessioned2025-02-17T08:37:10Z-
dc.date.available2025-02-17T08:37:10Z-
dc.identifier.urihttp://hdl.handle.net/10397/111322-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Tsang, Y. P., Mo, D. Y., Chung, K. T., & Lee, C. K. M. (2025). DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics. Software Impacts, 23, 100732 is available at https://doi.org/10.1016/j.simpa.2024.100732.en_US
dc.subject3D bin packingen_US
dc.subjectConstructive heuristicsen_US
dc.subjectDeep reinforcement learningen_US
dc.subjectOnline optimizationen_US
dc.subjectPythonen_US
dc.titleDeepPack3D : a Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristicsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume23en_US
dc.identifier.doi10.1016/j.simpa.2024.100732en_US
dcterms.abstractThe rapid advancement of industrial robotic automation has increased the significance of online 3D bin packing optimization for applications, like palletization and container loading. Despite numerous learning-based methods emerging for informed decision-making in this process, the absence of a standardized benchmark makes it challenging to experience the process and validate new algorithms. To bridge this gap, we introduce DeepPack3D, a software package that integrates deep reinforcement learning and constructive heuristic approaches for online 3D bin packing optimization. DeepPack3D provides a foundation for benchmarking, allowing users to evaluate performance using customizable item lists and lookahead values, thereby facilitating consistent research advancements.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSoftware impacts, Mar. 2025, v. 23, 100732en_US
dcterms.isPartOfSoftware impactsen_US
dcterms.issued2025-03-
dc.identifier.eissn2665-9638en_US
dc.identifier.artn100732en_US
dc.description.validate202502 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3407-
dc.identifier.SubFormID50067-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
dc.relation.rdatahttps://codeocean.com/capsule/2079012/treeen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2665963824001209-main.pdf990.87 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

27
Citations as of Apr 14, 2025

Downloads

18
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.