Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111190
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorQin, JKen_US
dc.creatorSun, HLen_US
dc.creatorSu, Ten_US
dc.creatorZhao, Wen_US
dc.creatorZhen, Len_US
dc.creatorChai, Yen_US
dc.creatorXu, CYen_US
dc.date.accessioned2025-02-17T01:37:54Z-
dc.date.available2025-02-17T01:37:54Z-
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://hdl.handle.net/10397/111190-
dc.language.isoenen_US
dc.publisherAIP Publishing LLCen_US
dc.rights© 2021 Author(s). Published under an exclusive license by AIP Publishing.en_US
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Qin, J.-K., Sun, H.-L., Su, T., Zhao, W., Zhen, L., Chai, Y., & Xu, C.-Y. (2021). Strain engineering of quasi-1D layered TiS3 nanosheets toward giant anisotropic Raman and piezoresistance responses. Applied Physics Letters, 119(20) and may be found at https://doi.org/10.1063/5.0069569.en_US
dc.titleStrain engineering of quasi-1D layered TiS₃ nanosheets toward giant anisotropic Raman and piezoresistance responsesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage201903-1en_US
dc.identifier.epage201903-6en_US
dc.identifier.volume119en_US
dc.identifier.issue20en_US
dc.identifier.doi10.1063/5.0069569en_US
dcterms.abstractQuasi-one-dimensional layered TiS3 nanosheets possess highly anisotropic physical properties. Herein, we reported the anisotropic strain response of Raman and the piezoresistance effect in layered TiS3 nanosheets. An attractive Gr€ uneisen parameter (cm) of 5.82 was achieved for AIII g mode in the b-axis strained TiS3 nanosheet, while a negligible value of cm was obtained when the strain is applied along the a-axis direction. We also revealed the opposite piezoresistive effect with strains applied along the two principal axes, demonstrating a gauge factor ratio of approximately 1:3.2. The giant anisotropy is attributed to the strain modulated bandgap, which was further confirmed by density functional theory calculations.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied physics letters, 15 Nov. 2021, v. 119, no. 20, 201903, p. 201903-1 - 201903-6en_US
dcterms.isPartOfApplied physics lettersen_US
dcterms.issued2021-11-15-
dc.identifier.scopus2-s2.0-85119717891-
dc.identifier.eissn1077-3118en_US
dc.identifier.artn201903en_US
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Shenzhen Training Programme Foundation for the Innovative Talents; Shenzhen Science and Technology Program; Natural Science Foundation of Guangdong Provinceen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
201903_1_online.pdf4.35 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

12
Citations as of Apr 14, 2025

Downloads

1
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

11
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.