Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111158
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorNazari, A-
dc.creatorWang, C-
dc.creatorHe, R-
dc.creatorTaghizadeh-Hesary, F-
dc.creatorHong, J-
dc.date.accessioned2025-02-17T01:37:43Z-
dc.date.available2025-02-17T01:37:43Z-
dc.identifier.issn1070-6631-
dc.identifier.urihttp://hdl.handle.net/10397/111158-
dc.language.isoenen_US
dc.publisherAIP Publishing LLCen_US
dc.rights© 2023 Author(s). Published under an exclusive license by AIP Publishing.en_US
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Nazari, A., Wang, C., He, R., Taghizadeh-Hesary, F., & Hong, J. (2023). Numerical investigation of airborne infection risk in an elevator cabin under different ventilation designs. Physics of Fluids, 35(6) and may be found at https://doi.org/10.1063/5.0152878.en_US
dc.titleNumerical investigation of airborne infection risk in an elevator cabin under different ventilation designsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: 王畅畅en_US
dc.description.otherinformationAuthor name used in this publication: 何瑞辰en_US
dc.description.otherinformationAuthor name used in this publication: 洪家荣en_US
dc.identifier.spage063318-1-
dc.identifier.epage063318-22-
dc.identifier.volume35-
dc.identifier.issue6-
dc.identifier.doi10.1063/5.0152878-
dcterms.abstractAirborne transmission of SARS-CoV-2 via virus-laden aerosols in enclosed spaces poses a significant concern. Elevators, commonly utilized enclosed spaces in modern tall buildings, present a challenge as the impact of varying heating, ventilation, and air conditioning (HVAC) systems on virus transmission within these cabins remains unclear. In this study, we employ computational modeling to examine aerosol transmission within an elevator cabin outfitted with diverse HVAC systems. Using a transport equation, we model aerosol concentration and assess infection risk distribution across passengers' breathing zones. We calculate the particle removal efficiency for each HVAC design and introduce a suppression effect criterion to evaluate the effectiveness of the HVAC systems. Our findings reveal that mixing ventilation, featuring both inlet and outlet at the ceiling, proves most efficient in reducing particle spread, achieving a maximum removal efficiency of 79.40% during the exposure time. Conversely, the stratum ventilation model attains a mere removal efficiency of 3.97%. These results underscore the importance of careful HVAC system selection in mitigating the risk of SARS-CoV-2 transmission within elevator cabins.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysics of fluids, June 2023, v. 35, no. 6, 063318, p. 063318-1 - 063318-22-
dcterms.isPartOfPhysics of fluids-
dcterms.issued2023-06-
dc.identifier.scopus2-s2.0-85163690940-
dc.identifier.eissn1089-7666-
dc.identifier.artn063318-
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Othersen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextChina Scholarship Council (CSC)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
063318_1_5.0152878.pdf13.5 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

3
Citations as of Apr 14, 2025

Downloads

3
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

20
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.