Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111151
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorLou, Xen_US
dc.creatorHou, Xen_US
dc.creatorChen, Yen_US
dc.creatorCui, Sen_US
dc.creatorWang, Jen_US
dc.creatorWang, Qen_US
dc.creatorFan, Hen_US
dc.creatorTian, Xen_US
dc.date.accessioned2025-02-17T01:37:39Z-
dc.date.available2025-02-17T01:37:39Z-
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://hdl.handle.net/10397/111151-
dc.language.isoenen_US
dc.publisherAIP Publishing LLCen_US
dc.rights© 2023 Author(s). Published under an exclusive license by AIP Publishing.en_US
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Lou, X., Hou, X., Chen, Y., Cui, S., Wang, J., Wang, Q., Fan, H., & Tian, X. (2023). Ferroelectric domain switching pathways—From grain boundary to grain body. Applied Physics Letters, 122(21) and may be found at https://doi.org/10.1063/5.0146252.en_US
dc.titleFerroelectric domain switching pathways : from grain boundary to grain bodyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage212902-1en_US
dc.identifier.epage212902-6en_US
dc.identifier.volume122en_US
dc.identifier.issue21en_US
dc.identifier.doi10.1063/5.0146252en_US
dcterms.abstractGrain boundaries (GBs) are one of the main factors influencing the polar domain evolution of polycrystalline ferroelectrics. However, domain switching from GBs to grains remains an unsolved aspect. Previous microscopic GB assumptions hinder such theoretical investigations, assuming that the structure and properties of GB are independent of the misorientation of adjacent grains. This work investigates the competition between the energy densities and domain-switching pathways based on the formation mechanism of the GB model. It is found that the domain-switching pathways in polycrystalline ferroelectrics follow three rules: (1) domain switching occurs near low-energy-density GBs; (2) the development of domain-switching pathway originates near the low-energy-density GBs. This pathway ultimately influences the overall domain-switching process, which follows the energy minimization principle; and (3) the domain-switching trend expands to both sides of the pathways after complete formation. The domain evolution rules for polycrystalline ferroelectric materials proposed in this work are conducive to improving the performance of ferroelectric ceramics via GB engineering.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied physics letters, 22 May 2023, v. 122, no. 21, 212902, p. 212902-1 - 212902-6en_US
dcterms.isPartOfApplied physics lettersen_US
dcterms.issued2023-05-22-
dc.identifier.scopus2-s2.0-85160674743-
dc.identifier.eissn1077-3118en_US
dc.identifier.artn212902en_US
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Science and Technology Major Project; National Numerical Windtunnelen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
212902_1_5.0146252.pdf3.34 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

10
Citations as of Apr 14, 2025

Downloads

5
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.