Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111118
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorMainland Development Officeen_US
dc.creatorLi, Sen_US
dc.creatorTang, XGen_US
dc.creatorGuo, XBen_US
dc.creatorTang, Zen_US
dc.creatorLiu, QXen_US
dc.creatorJiang, YPen_US
dc.creatorLi, Wen_US
dc.creatorLu, SGen_US
dc.creatorZheng, Gen_US
dc.date.accessioned2025-02-17T01:37:28Z-
dc.date.available2025-02-17T01:37:28Z-
dc.identifier.issn0021-8979en_US
dc.identifier.urihttp://hdl.handle.net/10397/111118-
dc.language.isoenen_US
dc.publisherAIP Publishing LLCen_US
dc.rights© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Shuifeng Li, Xin-Gui Tang, Xiao-Bin Guo, Zhenhua Tang, Qiu-Xiang Liu, Yan-Ping Jiang, Wenhua Li, Sheng-Guo Lu, Guangping Zheng; Superior energy storage and discharge performance achieved in PbHfO3-based antiferroelectric ceramics. J. Appl. Phys. 7 March 2024; 135 (9): 094101 is available at https://dx.doi.org/10.1063/5.0199206.en_US
dc.titleSuperior energy storage and discharge performance achieved in PbHfO₃-based antiferroelectric ceramicsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage094101-1en_US
dc.identifier.epage094101-10en_US
dc.identifier.volume135en_US
dc.identifier.issue9en_US
dc.identifier.doi10.1063/5.0199206en_US
dcterms.abstractDielectric capacitors prepared by antiferroelectric (AFE) materials have the advantages of large power density and fast discharge ability. It has been a focus on the improvement of the recoverable energy density (Wrec) and discharge energy–density (Wdis) in the AFE ceramics. To address the above issue, optimizing the proportion of components is proposed for enhancing ceramic antiferroelectricity, ultimately improving the breakdown strength (Eb) and Wrec. In this work, an ultrahigh Wrec (14.3 J/cm3) with an excellent energy efficiency (η) of 81.1% is obtained in (Pb0.96Sr0.02La0.02)(Hf0.9Sn0.1)O3 AFE ceramic at electric field of 490 kV/cm, which is the maximum value reported in lead-based AFE ceramics fabricated by the conventional solid-state reaction method so far. The multistage phase transition induced by the electric field is observed in the polarization–electric field (P–E) hysteresis loops. Furthermore, an outstanding power density (PD) of 335 MW/cm3 and an excellent Wdis of 8.97 J/cm3 with a rapid discharge speed (102 ns) are obtained at electric field of 390 kV/cm. In addition, (Pb0.96Sr0.02La0.02)(Hf0.9Sn0.1)O3 ceramics also possess an excellent thermal and frequency stability. These exceptional properties indicate that (Pb0.98−xSrxLa0.02)(Hf0.9Sn0.1)O3 ceramics are a potential candidate for pulsed power devices and power electronic devices.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of applied physics, 7 Mar. 204, v. 135, no. 9, 094101, p. 094101-1 - 094101-10en_US
dcterms.isPartOfJournal of applied physicsen_US
dcterms.issued2024-03-07-
dc.identifier.scopus2-s2.0-85186721541-
dc.identifier.eissn1089-7550en_US
dc.identifier.artn094101en_US
dc.description.validate202502 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China (NNSFC); Guangdong Basic and Applied Basic Research Foundation; Guangdong Provincial Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
094101_1_5.0199206.pdf4.35 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

9
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

8
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.