Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111116
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLuo, Ten_US
dc.creatorLi, Zen_US
dc.creatorYuan, Zen_US
dc.creatorPeng, Wen_US
dc.creatorLiu, Ten_US
dc.creatorWang, LLen_US
dc.creatorWang, Jen_US
dc.date.accessioned2025-02-17T01:37:27Z-
dc.date.available2025-02-17T01:37:27Z-
dc.identifier.issn1070-6631en_US
dc.identifier.urihttp://hdl.handle.net/10397/111116-
dc.language.isoenen_US
dc.publisherAIP Publishing LLCen_US
dc.rights© 2024 Author(s). Published under an exclusive license by AIP Publishing.en_US
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Tengfei Luo, Zhijie Li, Zelong Yuan, Wenhui Peng, Tianyuan Liu, Liangzhu (Leon) Wang, Jianchun Wang; Fourier neural operator for large eddy simulation of compressible Rayleigh–Taylor turbulence. Physics of Fluids 1 July 2024; 36 (7): 075165 and may be found at https://doi.org/10.1063/5.0213412.en_US
dc.titleFourier neural operator for large eddy simulation of compressible Rayleigh-Taylor turbulenceen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: 罗腾飞en_US
dc.description.otherinformationAuthor name used in this publication: 李志杰en_US
dc.description.otherinformationAuthor name used in this publication: 袁泽龙en_US
dc.description.otherinformationAuthor name used in this publication: 彭文辉en_US
dc.description.otherinformationAuthor name used in this publication: 刘天源en_US
dc.description.otherinformationAuthor name used in this publication: 王建春en_US
dc.identifier.spage075165-1en_US
dc.identifier.epage075165-20en_US
dc.identifier.volume36en_US
dc.identifier.issue7en_US
dc.identifier.doi10.1063/5.0213412en_US
dcterms.abstractThe Fourier neural operator (FNO) framework is applied to the large eddy simulation (LES) of three-dimensional compressible Rayleigh-Taylor turbulence with miscible fluids at Atwood number A t = 0.5 , stratification parameter Sr = 1.0, and Reynolds numbers Re = 10 000 and 30 000. The FNO model is first used for predicting three-dimensional compressible turbulence. The different magnitudes of physical fields are normalized using root mean square values for an easier training of FNO models. In the a posteriori tests, the FNO model outperforms the velocity gradient model, the dynamic Smagorinsky model, and implicit large eddy simulation in predicting various statistical quantities and instantaneous structures, and is particularly superior to traditional LES methods in predicting temperature fields and velocity divergence. Moreover, the computational efficiency of the FNO model is much higher than that of traditional LES methods. FNO models trained with short-time, low Reynolds number data exhibit a good generalization performance on longer-time predictions and higher Reynolds numbers in the a posteriori tests.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysics of fluids, July 2024, v. 36, no. 7, 075165, p. 075165-1 - 075165-20en_US
dcterms.isPartOfPhysics of fluidsen_US
dcterms.issued2024-07-
dc.identifier.scopus2-s2.0-85199166506-
dc.identifier.eissn1089-7666en_US
dc.identifier.artn075165en_US
dc.description.validate202502 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; NSFC Basic Science Center Program; Shenzhen Science and Technology Program; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou); Department of Science and Technology of Guangdong Province; Center for Computational Science and Engineering of Southern University of Science and Technology; National Center for Applied Mathematics Shenzhen (NCAMS)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
075165_1_5.0213412.pdf4.56 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

6
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Nov 28, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.