Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111067
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineeringen_US
dc.creatorLi, Xen_US
dc.creatorHao, Jen_US
dc.creatorWen, CYen_US
dc.creatorFan, Een_US
dc.date.accessioned2025-02-17T01:37:07Z-
dc.date.available2025-02-17T01:37:07Z-
dc.identifier.issn1070-6631en_US
dc.identifier.urihttp://hdl.handle.net/10397/111067-
dc.language.isoenen_US
dc.publisherAIP Publishing LLCen_US
dc.rights© 2024 Author(s). Published under an exclusive license by AIP Publishing.en_US
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Xin Li, Jiaao Hao, Chih-Yung Wen, E. Fan; Role of Atwood number in the shock-induced evolution of a double-layer gas cylinder. Physics of Fluids 1 August 2024; 36 (8): 082105 and may be found at https://doi.org/10.1063/5.0221371.en_US
dc.titleRole of Atwood number in the shock-induced evolution of a double-layer gas cylinderen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: 李炘en_US
dc.description.otherinformationAuthor name used in this publication: 郝佳傲en_US
dc.description.otherinformationAuthor name used in this publication: 温志湧en_US
dc.description.otherinformationAuthor name used in this publication: 范锷en_US
dc.identifier.spage082105-1en_US
dc.identifier.epage082105-17en_US
dc.identifier.volume36en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1063/5.0221371en_US
dcterms.abstractAn A/B/C-type gas cylinder with various concentrations of SF6 (ranging from 5% to 80% in volume fraction) in the inner cylinder is constructed to investigate the dependence of the interface evolution on the Atwood number. For negative Atwood numbers, secondary vortex pairs emerge at the downstream interface of the outer cylinder following the interaction of a high-pressure triple point with the downstream interface, while a downstream jet is formed due to the generation of a notably higher-pressure zone after the transmitted shock wave traverses the convergence point. The widths and heights of both outer and inner cylinders are analyzed to quantify the interface evolution. The mechanism behind the vorticity evolution is investigated using the vorticity transport equation. The vorticity equation is introduced to investigate the mechanism of vorticity evolution. The dilatation and baroclinic terms play a dominant role in the dynamics of vorticity production. The net circulation can be predicted by linearly summing existing circulation models. Analysis of the area and mean mass fraction histories of the outer and inner cylinders shows that more ambient gas dilutes SF6 and promotes gas mixing as the Atwood number decreases.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysics of fluids, Aug. 2024, v. 36, no. 8, 082105, p. 082105-1 - 082105-17en_US
dcterms.isPartOfPhysics of fluidsen_US
dcterms.issued2024-08-
dc.identifier.scopus2-s2.0-85201047225-
dc.identifier.eissn1089-7666en_US
dc.identifier.artn082105en_US
dc.description.validate202502 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
082105_1_5.0221371.pdf6.62 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

11
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Nov 28, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.