Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110847
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorGao, Yen_US
dc.creatorTao, Yen_US
dc.creatorLi, Gen_US
dc.creatorShen, Pen_US
dc.creatorPellenq, RJMen_US
dc.creatorPoon, CSen_US
dc.date.accessioned2025-02-11T05:00:49Z-
dc.date.available2025-02-11T05:00:49Z-
dc.identifier.issn0027-8424en_US
dc.identifier.urihttp://hdl.handle.net/10397/110847-
dc.language.isoenen_US
dc.publisherNational Academy of Sciencesen_US
dc.rightsCopyright © 2024 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial- NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/)en_US
dc.rightsThe following publication Y. Gao, Y. Tao, G. Li, P. Shen, R.J. Pellenq, & C.S. Poon (2025), Moisture-driven carbonation kinetics for ultrafast CO2 mineralization, Proc. Natl. Acad. Sci. U.S.A. 122 (1) e2418239121 is available at https://doi.org/10.1073/pnas.2418239121.en_US
dc.subjectAtomistic simulationsen_US
dc.subjectCarbonation kineticsen_US
dc.subjectCO₂ mineralizationen_US
dc.subjectMoisture impacten_US
dc.titleMoisture-driven carbonation kinetics for ultrafast CO₂ mineralizationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume122en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1073/pnas.2418239121en_US
dcterms.abstractCO₂ mineralization, a process where CO₂ reacts with minerals to form stable carbonates, presents a sustainable approach for CO₂ sequestration and mitigation of global warming. While the crucial role of water in regulating CO₂ mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals. A self-designed carbonation reactor equipped with an ultrasonic atomizer is used to meticulously control the water content during carbonation experiments. Grand Canonical Monte Carlo simulations reveal that maximum CO₂ uptake occurs at a critical water content where the initiation of capillary condensation significantly enhanced liquid–gas interactions. This phenomenon leads to CO₂ adsorption–driven ultrafast carbonation at an optimal moisture content (0.1 to 0.2 g/g, water mass ratio to total wet mass of the mineral). A higher moisture content decimates the carbonation rate by crippling CO₂ intake within mineral pores. However, at exceptionally high moisture levels, the carbonation reaction sites shift from internal mesopores to the grain surface. This results in surface dissolution–driven ultrafast carbonation, attributed to the monotonically decreasing free energy of dissolution with increasing surface water thickness, as revealed by metadynamics simulations. This study provides a fundamental and unified understanding of the multifaceted role of water in mineral carbonation, paving the way for optimizing ultrafast CO₂ mineralization strategies for global decarbonization efforts.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of the National Academy of Sciences of the United States of America, 7 Jan. 2025, v. 122, no. 1, e2418239121en_US
dcterms.isPartOfProceedings of the National Academy of Sciences of the United States of Americaen_US
dcterms.issued2025-01-07-
dc.identifier.scopus2-s2.0-85214667950-
dc.identifier.pmid39793077-
dc.identifier.eissn1091-6490en_US
dc.identifier.artne2418239121en_US
dc.description.validate202502 bcwhen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Research and Development Program of China; Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Gao_Moisture-driven_Carbonation_Kinetics.pdf3.33 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

29
Citations as of Apr 14, 2025

Downloads

55
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

17
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.