Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110805
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Biomedical Engineering-
dc.creatorZhou, Y-
dc.creatorLee, TTY-
dc.creatorLai, KKL-
dc.creatorWu, C-
dc.creatorLau, HT-
dc.creatorYang, D-
dc.creatorSong, Z-
dc.creatorChan, CY-
dc.creatorChu, WCW-
dc.creatorCheng, JCY-
dc.creatorLam, TP-
dc.creatorZheng, YP-
dc.date.accessioned2025-02-04T07:11:19Z-
dc.date.available2025-02-04T07:11:19Z-
dc.identifier.issn0957-4174-
dc.identifier.urihttp://hdl.handle.net/10397/110805-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.rights© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Zhou, Y., Lee, T. T.-Y., Lai, K. K.-L., Wu, C., Lau, H. T., Yang, D., Song, Z., Chan, C.-Y., Chu, W. C.-W., Cheng, J. C.-Y., Lam, T.-P., & Zheng, Y.-P. (2025). Automatic ultrasound curve angle measurement via affinity clustering for adolescent idiopathic scoliosis evaluation. Expert Systems with Applications, 269, 126410 is available at https://doi.org/10.1016/j.eswa.2025.126410.en_US
dc.subjectIntelligent scoliosis diagnosisen_US
dc.subjectLandmark detectionen_US
dc.subjectUltrasound volume projection imagingen_US
dc.subjectVertebraeen_US
dc.titleAutomatic ultrasound curve angle measurement via affinity clustering for adolescent idiopathic scoliosis evaluationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume269-
dc.identifier.doi10.1016/j.eswa.2025.126410-
dcterms.abstractThe current clinical gold standard for evaluating adolescent idiopathic scoliosis (AIS) is X-ray radiography, specifically through Cobb angle measurement. However, frequent monitoring of AIS progression using X-rays presents a significant challenge due to the risks associated with cumulative radiation exposure. Although 3D ultrasound offers a validated radiation-free alternative, it relies on manual spinal curvature assessment, leading to inter and intra-rater angle variation. In this study, we propose an automated ultrasound curve angle (UCA) measurement system that utilizes a dual-branch network to simultaneously perform landmark detection and vertebra segmentation on ultrasound coronal images. The system incorporates an affinity clustering algorithm within vertebral segments to establish landmark relationships, enabling efficient line delineation for UCA measurement. Our method, specifically optimized for UCA calculation, demonstrates superior performance in landmark and line detection compared to existing approaches. The high correlation between the automatic UCA and Cobb angle (R2=0.858) suggests that our proposed method can potentially replace manual UCA measurement in ultrasound scoliosis assessment. This advancement could significantly enhance the accuracy and reliability of scoliosis monitoring while reducing the need for manual measurement.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationExpert systems with applications, 15 Apr. 2025, v. 269, 126410-
dcterms.isPartOfExpert systems with applications-
dcterms.issued2025-04-15-
dc.identifier.scopus2-s2.0-85214489002-
dc.identifier.eissn1873-6793-
dc.identifier.artn126410-
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_TAen_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.TAElsevier (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0957417425000326-main.pdf2.58 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

16
Citations as of Apr 14, 2025

Downloads

10
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.