Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110754
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorXie, Wen_US
dc.creatorZeng, Yen_US
dc.creatorZhang, Xen_US
dc.creatorWong, HYen_US
dc.creatorZhang, Ten_US
dc.creatorWang, Zen_US
dc.creatorWu, Xen_US
dc.creatorShi, Jen_US
dc.creatorHuang, Xen_US
dc.creatorXiao, Fen_US
dc.creatorUsmani, Aen_US
dc.date.accessioned2025-01-22T06:53:55Z-
dc.date.available2025-01-22T06:53:55Z-
dc.identifier.urihttp://hdl.handle.net/10397/110754-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).en_US
dc.rightsThe following publication Xie, W., Zeng, Y., Zhang, X., Wong, H. Y., Zhang, T., Wang, Z., Wu, X., Shi, J., Huang, X., Xiao, F., & Usmani, A. (2025). AIoT-powered building digital twin for smart firefighting and super real-time fire forecast. Advanced Engineering Informatics, 65, 103117 is available at https://dx.doi.org/10.1016/j.aei.2025.103117.en_US
dc.subjectSmart buildingen_US
dc.subjectFire forecasten_US
dc.subjectInternet of thingsen_US
dc.subjectDeep learningen_US
dc.subjectSensor networken_US
dc.subjectDigital twinen_US
dc.titleAIoT-powered building digital twin for smart firefighting and super real-time fire forecasten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume65en_US
dc.identifier.doi10.1016/j.aei.2025.103117en_US
dcterms.abstractComplex dynamics inherent of building fire poses big challenges to firefighting and rescue, especially with limited access to critical fire-hazard information. This work proposes the novel AIoT-integrated Digital Twin for the full-scale multi-floor building to manage the dynamics fire information. This system allows for super real-time mapping of actual building fires into accurate and concise digital fire scene at the cloud platform. By developing the ADLSTM-Fire model, we effectively transform discrete sensor-array data into high-dimensional spatiotemporal temperature fields in real-time, and furthermore, forecast future fire development and hazardous regions 60 s in advance. By comparing with benchmark numerical simulations, the Digital Twin system demonstrates the high reliability of super real-time fire-scene reconstruction and the capacity of fire-risk forecasting in supporting firefighting. The full-scale building fire experiment is employed to validate the generalisation capability of the proposed smart firefighting method. This work demonstrates the great potential and robustness of AIoT and digital twin in support smart firefighting and reducing fire casualties by information fusion.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvanced engineering informatics, May 2025, v. 65, pt. A, 103117en_US
dcterms.isPartOfAdvanced engineering informaticsen_US
dcterms.issued2025-05-
dc.identifier.eissn1474-0346en_US
dc.identifier.artn103117en_US
dc.description.validate202501 bcrcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3368, OA_TA-
dc.identifier.SubFormID50010-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.TAElsevier (2025)en_US
dc.description.oaCategoryTAen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S1474034625000102-main.pdf13.54 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

23
Citations as of Apr 14, 2025

Downloads

15
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.