Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110725
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Biomedical Engineeringen_US
dc.creatorLiu, Len_US
dc.creatorCheng, Yen_US
dc.creatorDeng, Zen_US
dc.creatorWang, Sen_US
dc.creatorChen, Den_US
dc.creatorHu, Xen_US
dc.creatorLiò, Pen_US
dc.creatorSchönlieb, CBen_US
dc.creatorAviles-Rivero, Aen_US
dc.date.accessioned2025-01-16T02:57:16Z-
dc.date.available2025-01-16T02:57:16Z-
dc.identifier.isbn979-8-4007-0686-8en_US
dc.identifier.urihttp://hdl.handle.net/10397/110725-
dc.descriptionACM Multimedia 2024, Melbourne, Australia, Oct 28 - Nov 1, 2024en_US
dc.language.isoenen_US
dc.publisherThe Association for Computing Machineryen_US
dc.rights© 2024 Copyright held by the owner/author(s).en_US
dc.rightsThis work is licensed under a Creative Commons Attribution International 4.0 License (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Liu, L., Cheng, Y., Deng, Z., Wang, S., Chen, D., Hu, X., Liò, P., Schönlieb, C.-B., & Aviles-Rivero, A. (2024). TrafficMOT: A Challenging Dataset for Multi-Object Tracking in Complex Traffic Scenarios. Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne VIC, Australia is available at https://doi.org/10.1145/3664647.3681153.en_US
dc.subjectFoundation modelen_US
dc.subjectMulti-object trackingen_US
dc.subjectTraffic video dataseten_US
dc.titleTrafficMOT : a challenging dataset for multi-object tracking in complex traffic scenariosen_US
dc.typeConference Paperen_US
dc.identifier.spage1265en_US
dc.identifier.epage1273en_US
dc.identifier.doi10.1145/3664647.3681153en_US
dcterms.abstractMulti-object tracking in traffic videos is a crucial research area, offering immense potential for enhancing traffic monitoring accuracy and promoting road safety measures through the utilisation of advanced machine learning algorithms. However, existing datasets for multi-object tracking in traffic videos often feature limited instances or focusonsingleclasses, whichcannotwellsimulatethechallenges encountered in complex traffic scenarios. To address this gap, we introduce TrafficMOT, an extensive dataset designed to encompass diverse traffic situations with complex scenarios. To validate the complexity and challenges presented by TrafficMOT, we conducted comprehensive empirical studies using three different settings: fully-supervised, semi-supervised, and a recent powerful zeroshot foundation model Tracking Anything Model (TAM). The experimental results highlight the inherent complexity of this dataset, emphasising its value to drive advancements in the field of traffic monitoring and multi-object tracking. Code and data are available at the project page: https://lihaoliu-cambridge.github.io/trafficmoten_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn MM '24 : Proceedings of the 32nd ACM International Conference on Multimedia, p. 1265-1273. New York, NY: The Association for Computing Machinery, 2024en_US
dcterms.issued2024-
dc.relation.ispartofbookMM '24 : Proceedings of the 32nd ACM International Conference on Multimediaen_US
dc.relation.conferenceACM International Conference on Multimedia [MM]en_US
dc.description.validate202501 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3353-
dc.identifier.SubFormID49969-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
3664647.3681153.pdf10.18 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

9
Citations as of Feb 2, 2025

Downloads

8
Citations as of Feb 2, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.