Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110701
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorDing, Sen_US
dc.creatorZhang, Hen_US
dc.creatorZhang, Yen_US
dc.creatorHuang, Xen_US
dc.creatorSong, Wen_US
dc.date.accessioned2025-01-09T02:24:48Z-
dc.date.available2025-01-09T02:24:48Z-
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://hdl.handle.net/10397/110701-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectEvent cameraen_US
dc.subjectFire image databaseen_US
dc.subjectFlame detectionen_US
dc.subjectSafety scienceen_US
dc.subjectSmart firefightingen_US
dc.titleHyper real-time flame detection : dynamic insights from event cameras and FlaDE dataseten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume263en_US
dc.identifier.doi10.1016/j.eswa.2024.125746en_US
dcterms.abstractBio-inspired sensors known as event cameras offer significant advantages over traditional frame-based RGB cameras, particularly in overcoming challenges like static backgrounds, overexposure, and data redundancy. In this paper, we explore the potential of event cameras in flame detection. Firstly, we establish an open-access Flame Detection dataset based on Event Cameras (FlaDE). To mitigate noise in extreme conditions with event cameras, we then propose a denoising preprocessing module termed Recursive Event Denoiser (RED). By leveraging distinctive probability distributions between signals and noise, RED achieves 0.974 (MESR) on the E-MLB benchmark, outperforming than other statistical denoising methods. Furthermore, we delve into the physical meaning behind the event rates, enabling statistical extraction of flame amidst static background and other dynamic sources. Based on this insight, we develop the hardware-efficient BEC-SVM flame detection algorithm. Benchmarked against other prominent detection modules using the FlaDE dataset, our approach highlights the feasibility of leveraging event data for robust flame detection, achieving a detection accuracy of 96.6% (AP.50) with a processing speed of 505.7 FPS on CPU. This research contributes valuable insights for future advancements in flame detection methodologies. The implementation of the code is available at https://github.com/KugaMaxx/cocoa-flade.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationExpert systems with applications, 5 Mar. 2025, v. 263, 125746en_US
dcterms.isPartOfExpert systems with applicationsen_US
dcterms.issued2024-03-05-
dc.identifier.eissn1873-6793en_US
dc.identifier.artn125746en_US
dc.description.validate202501 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3343-
dc.identifier.SubFormID49958-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-03-05en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status open access
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

40
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.