Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110700
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.contributorResearch Institute for Advanced Manufacturingen_US
dc.creatorYou, Yen_US
dc.creatorLi, Men_US
dc.date.accessioned2025-01-09T01:59:09Z-
dc.date.available2025-01-09T01:59:09Z-
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://hdl.handle.net/10397/110700-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectCyber physical interneten_US
dc.subjectPhysical interneten_US
dc.subjectRail-water intermodal transporten_US
dc.subjectRouter bandwidth configurationen_US
dc.titleLimited data-driven router bandwidth configuration for cyber physical interneten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume265en_US
dc.identifier.doi10.1016/j.eswa.2024.126003en_US
dcterms.abstractIn the Cyber Physical Internet (CPI), router bandwidth indicates the router’s capacity to handle and transmit data. Proper configuration of router bandwidth is essential to satisfy throughput demands, making the evaluation of router throughput a vital aspect of bandwidth configuration. By introducing a novel bandwidth configuration method, we address the supply and demand balance in the logistics field from a fresh perspective. This paper explores the configuration of CPI router bandwidth in scenarios where data accessibility is limited. The study utilizes the Cyber Physical Internet-Autoregressive Integrated Moving Average-Kalman (CPI-AK) hybrid evaluation method to assess fluctuations in router throughput. Additionally, the CPI-Router Bandwidth Configuration (CPI-RBC) model is employed to implement the bandwidth configuration. Finally, freight data from Huyue station, spanning from January 2020 to December 2021, were analyzed and processed. The proposed bandwidth configuration methodology was validated and evaluated through a real case study of this rail-water intermodal station. The results demonstrated that the proposed model was able to represent throughput fluctuations more accurately and achieve short-term bandwidth configuration within a fault-tolerant and with a limited observation dataset.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationExpert systems with applications, 15 Mar. 2025, v. 265, 126003en_US
dcterms.isPartOfExpert systems with applicationsen_US
dcterms.issued2025-03-15-
dc.identifier.eissn1873-6793en_US
dc.identifier.artn126003en_US
dc.description.validate202501 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3342-
dc.identifier.SubFormID49957-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-03-15en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-03-15
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

30
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.