Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110692
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorWang, Men_US
dc.creatorPu, Hen_US
dc.creatorXu, Yen_US
dc.creatorWu, Cen_US
dc.creatorGu, Yen_US
dc.creatorCai, Qen_US
dc.creatorYin, Gen_US
dc.creatorYin, Pen_US
dc.creatorZhang, Cen_US
dc.creatorWong, WLen_US
dc.creatorWan, Men_US
dc.creatorBai, Yen_US
dc.creatorFeng, Xen_US
dc.date.accessioned2025-01-03T06:49:56Z-
dc.date.available2025-01-03T06:49:56Z-
dc.identifier.issn1674-7291en_US
dc.identifier.urihttp://hdl.handle.net/10397/110692-
dc.language.isoenen_US
dc.publisherScience in China Pressen_US
dc.rights© Science China Press 2024en_US
dc.rightsThis is the accepted version of the article: Wang, M., Pu, H., Xu, Y. et al. Chemical biology investigation of a triple-action, smart-decomposition antimicrobial booster based-combination therapy against “ESKAPE” pathogens. Sci. China Chem. 67, 3071–3082 (2024). https://doi.org/10.1007/s11426-024-2228-4. The original publication is available at www.scichina.com and www.springerlink.com.en_US
dc.titleChemical biology investigation of a triple-action, smart-decomposition antimicrobial booster based-combination therapy against “ESKAPE” pathogensen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage3071en_US
dc.identifier.epage3082en_US
dc.identifier.volume67en_US
dc.identifier.issue9en_US
dc.identifier.doi10.1007/s11426-024-2228-4en_US
dcterms.abstractThe global antibiotic resistance crisis necessitates urgent solutions. One innovative approach involves potentiating antibiotics and non-antibiotic drugs with adjuvants or boosters. A major drawback of these membrane-active boosters is their limited biocompatibility, as they struggle to differentiate between prokaryotic and eukaryotic membranes. This study reports the chemical biology investigation of a dual-action oligoamidine (OA1) booster with a glutathione-triggered decomposition mechanism. OA1, when combined with other antimicrobial molecules, exhibits a triple-targeting mechanism including cell membrane disruption, DNA targeting, and intracellular enzyme inhibition. This multi-targeting mechanism not only enhances the in vitro and in vivo eradication of antibiotic-resistant “ESKAPE” pathogens, but also suppresses the development of bacterial resistance. Furthermore, OA1 maintains its activity in bacterial cells by creating an oxidative environment, while it quickly decomposes in mammalian cells due to high glutathione levels. These mechanistic insights and design principles may provide a feasible approach to develop novel antimicrobial agents and effective anti-resistance combination therapies.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationScience China : chemistry, Sept 2024, v. 67, no. 9, p. 3071-3082en_US
dcterms.isPartOfScience China : chemistryen_US
dcterms.issued2024-09-
dc.identifier.eissn1869-1870en_US
dc.description.validate202501 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3337-
dc.identifier.SubFormID49953-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHealth and Medical Research Fund (HMRF)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Chemical_Biology_Investigation.pdfPre-Published version4.99 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

33
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.