Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110589
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.creatorZhang, Len_US
dc.creatorLiu, Yen_US
dc.creatorHuang, Xen_US
dc.creatorHuang, Xen_US
dc.date.accessioned2024-12-24T02:13:11Z-
dc.date.available2024-12-24T02:13:11Z-
dc.identifier.issn1290-0729en_US
dc.identifier.urihttp://hdl.handle.net/10397/110589-
dc.language.isoenen_US
dc.publisherElsevier Massonen_US
dc.subjectBattery safetyen_US
dc.subjectInternal thermal runawayen_US
dc.subjectLithium-ion batteryen_US
dc.subjectNail testen_US
dc.subjectPropagation speeden_US
dc.titleIntra-cell thermal runaway propagation within a cylindrical battery induced by nail penetrationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume210en_US
dc.identifier.doi10.1016/j.ijthermalsci.2024.109633en_US
dcterms.abstractThe thermal runaway in batteries presents significant safety concerns. This study investigates the characteristics of intra-cell thermal runaway propagation in the 18650 cylindrical batteries triggered by nail penetration from the top cap. The experiment changes the nail penetration depth and speed in parallel to the cylindrical axis. The minimum penetration depth required to trigger the thermal runaway is found to be around 10 mm from the top, when the nail tip is just fully embedded in the jelly roll, reaching the largest speed of top-to-bottom intra-cell thermal runaway propagation (about 100 mm/s). Further increasing the nail-penetration depth, the propagation rate continuously decreases tenfold to about 10∼20 mm/s when the cell is pierced, because of the cooling effect of metal nail. The intra-cell propagation rate increases from 9 mm/s along with the nail-penetration speed and eventually approaches the nail-penetration speed, because the propagation mechanism changes from heat-transfer controlled to structure-damage controlled. Both reaction-propagation and fire-spread models are adopted to explain the effect of nail penetration on the process of intra-cell thermal runaway propagation. These findings help understand thermal runaway behaviors inside battery cells and facilitate the development of safer battery designs and effective safety management strategies.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationInternational journal of thermal sciences, Apr. 2025, v. 210, 109633en_US
dcterms.isPartOfInternational journal of thermal sciencesen_US
dcterms.issued2025-04-
dc.identifier.eissn2225-3556en_US
dc.identifier.artn109633en_US
dc.description.validate202412 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3332-
dc.identifier.SubFormID49948-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextKey-Area Research and Development Program of Guangdong Provinceen_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-04-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-04-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

34
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.