Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110584
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorMainland Development Officeen_US
dc.contributorResearch Centre for Nanoscience and Nanotechnologyen_US
dc.creatorDang, Zen_US
dc.creatorGuo, Fen_US
dc.creatorWang, Zen_US
dc.creatorJie, Wen_US
dc.creatorJin, Ken_US
dc.creatorChai, Yen_US
dc.creatorHao, Jen_US
dc.date.accessioned2024-12-23T06:58:15Z-
dc.date.available2024-12-23T06:58:15Z-
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://hdl.handle.net/10397/110584-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2024 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © 2024 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsnano.4c10231.en_US
dc.subject2D materialsen_US
dc.subjectFerroelectricityen_US
dc.subjectHigh-linear nonvolatile multistatesen_US
dc.subjectNeuromorphic vision sensoren_US
dc.subjectObject motion detectionen_US
dc.titleObject motion detection enabled by reconfigurable neuromorphic vision sensor under ferroelectric modulationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage27727en_US
dc.identifier.epage27737en_US
dc.identifier.volume18en_US
dc.identifier.issue40en_US
dc.identifier.doi10.1021/acsnano.4c10231en_US
dcterms.abstractIncreasing the demand for object motion detection (OMD) requires shifts of reducing redundancy, heightened power efficiency, and precise programming capabilities to ensure consistency and accuracy. Drawing inspiration from object motion-sensitive ganglion cells, we propose an OMD vision sensor with a simple device structure of a WSe2 homojunction modulated by a ferroelectric copolymer. Under optical mode and intermediate ferroelectric modulation, the vision sensor can generate progressive and bidirectional photocurrents with discrete multistates under zero power consumption. This design enables reconfigurable devices to emulate long-term potentiation and depression for synaptic weights updating, which exhibit 82 states (more than 6 bits) with a uniform step of 6 pA. Such OMD devices also demonstrate nonvolatility, reversibility, symmetry, and ultrahigh linearity, achieving a fitted R2 of 0.999 and nonlinearity values of 0.01/–0.01. Thus, a vision sensor could implement motion detection by sensing only dynamic information based on the brightness difference between frames, while eliminating redundant data from static scenes. Additionally, the neural network utilizing a linear result can recognize the essential moving information with a high recognition accuracy of 96.8%. We also present the scalable potential via a uniform 3 × 3 neuromorphic vision sensor array. Our work offers a platform to achieve motion detection based on controllable and energy-efficient ferroelectric programmability.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS nano, 8 Oct. 2024, v. 18, no. 40, p. 27727-27737en_US
dcterms.isPartOfACS nanoen_US
dcterms.issued2024-10-08-
dc.identifier.eissn1936-086Xen_US
dc.description.validate202412 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3327-
dc.identifier.SubFormID49937-
dc.description.fundingSourceRGCen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Dang_Object_Motion_Detection.pdfPre-Published version5.58 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

26
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.