Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110539
DC FieldValueLanguage
dc.contributorDepartment of Computingen_US
dc.contributorDepartment of Data Science and Artificial Intelligenceen_US
dc.creatorJin, Fen_US
dc.creatorRuan, Ben_US
dc.creatorHua, Wen_US
dc.creatorLi, Len_US
dc.creatorZhou, Xen_US
dc.date.accessioned2024-12-17T03:54:54Z-
dc.date.available2024-12-17T03:54:54Z-
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10397/110539-
dc.description29th International Conference on Database Systems for Advanced Applications (DASFAA) Gifu, Japan, July 2–5, 2024en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.titlePreserving location privacy with semantic-aware indistinguishabilityen_US
dc.typeConference Paperen_US
dc.identifier.spage232en_US
dc.identifier.epage242en_US
dc.identifier.volume14853en_US
dc.identifier.doi10.1007/978-981-97-5562-2_15en_US
dcterms.abstractThe rapid proliferation of location-based services (LBSs) has facilitated the collection of extensive location data by potentially untrustworthy servers, raising privacy concerns. Conventional solutions provide location privacy but often fail to fulfill the substantial data utility requirements inherent in LBSs. Thus, effective privacy protection for location data –models that provide theoretical guarantees while delivering high-quality services– has become an urgent demand. Particularly, semantic information, often expressed by the categories of points of interest (POI), is vital for the functionality of various LBSs. In response to this gap, we introduce two types of semantic-aware indistinguishability that protect location privacy by mathematically selecting indistinguishable alternatives from geospatial and/or semantic perspectives. Our well-designed mechanisms rigorously adhere to the new privacy standards, thus safeguarding precise locations while preserving semantically useful information. Experimental results validate our method’s superiority in affording robust privacy protection without compromising semantics.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationLecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics), 2024, v. 14853, p. 232-242en_US
dcterms.isPartOfLecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics)en_US
dcterms.issued2024-
dc.relation.conferenceInternational Conference on Database Systems for Advanced Applications [DASFAA]en_US
dc.identifier.eissn1611-3349en_US
dc.description.validate202412 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3016-
dc.identifier.SubFormID49210-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHKUST-HKPC Joint Research Lab for Industrial AI and Robotics (grant# HKPC22EG01-F); Hong Kong Jockey Club Charities Trusten_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2025-10-27en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Open Access Information
Status embargoed access
Embargo End Date 2025-10-27
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

13
Citations as of Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.