Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110519
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technology-
dc.contributorDepartment of Applied Physics-
dc.contributorResearch Institute for Smart Energy-
dc.creatorWang, Y-
dc.creatorXiong, Y-
dc.creatorSun, M-
dc.creatorZhou, J-
dc.creatorHao, F-
dc.creatorZhang, Q-
dc.creatorYe, C-
dc.creatorWang, X-
dc.creatorXu, Z-
dc.creatorWa, Q-
dc.creatorLiu, F-
dc.creatorMeng, X-
dc.creatorWang, J-
dc.creatorLu, P-
dc.creatorMa, Y-
dc.creatorYin, J-
dc.creatorZhu, Y-
dc.creatorChu, S-
dc.creatorHuang, B-
dc.creatorGu, L-
dc.creatorFan, Z-
dc.date.accessioned2024-12-17T00:43:24Z-
dc.date.available2024-12-17T00:43:24Z-
dc.identifier.issn1433-7851-
dc.identifier.urihttp://hdl.handle.net/10397/110519-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.rights© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.en_US
dc.rightsThe following publication Wang, Y., Xiong, Y., Sun, M., Zhou, J., Hao, F., Zhang, Q., Ye, C., Wang, X., Xu, Z., Wa, Q., Liu, F., Meng, X., Wang, J., Lu, P., Ma, Y., Yin, J., Zhu, Y., Chu, S., Huang, B., . . . Fan, Z. (2024). Controlled Synthesis of Unconventional Phase Alloy Nanobranches for Highly Selective Electrocatalytic Nitrite Reduction to Ammonia. Angewandte Chemie International Edition, 63(26), e202402841 is available at https://doi.org/10.1002/anie.202402841.en_US
dc.subjectAmmoniaen_US
dc.subjectElectrocatalysisen_US
dc.subjectMetal nanomaterialsen_US
dc.subjectNitrogen cycleen_US
dc.subjectUnconventional phaseen_US
dc.titleControlled synthesis of unconventional phase alloy nanobranches for highly selective electrocatalytic nitrite reduction to ammoniaen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume63-
dc.identifier.issue26-
dc.identifier.doi10.1002/anie.202402841-
dcterms.abstractThe controlled synthesis of metal nanomaterials with unconventional phases is of significant importance to develop high-performance catalysts for various applications. However, it remains challenging to modulate the atomic arrangements of metal nanomaterials, especially the alloy nanostructures that involve different metals with distinct redox potentials. Here we report the general one-pot synthesis of IrNi, IrRhNi and IrFeNi alloy nanobranches with unconventional hexagonal close-packed (hcp) phase. Notably, the as-synthesized hcp IrNi nanobranches demonstrate excellent catalytic performance towards electrochemical nitrite reduction reaction (NO2RR), with superior NH3 Faradaic efficiency and yield rate of 98.2 % and 34.6 mg h−1 mgcat−1 (75.5 mg h−1 mgIr−1) at 0 and −0.1 V (vs reversible hydrogen electrode), respectively. Ex/in situ characterizations and theoretical calculations reveal that the Ir−Ni interactions within hcp IrNi alloy improve electron transfer to benefit both nitrite activation and active hydrogen generation, leading to a stronger reaction trend of NO2RR by greatly reducing energy barriers of rate-determining step.-
dcterms.abstractGraphical abstract: [Figure not available: see fulltext.]-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAngewandte chemie international edition, 21 June 2024, v. 63, no. 26, e202402841-
dcterms.isPartOfAngewandte chemie international edition-
dcterms.issued2024-06-21-
dc.identifier.scopus2-s2.0-85193952190-
dc.identifier.eissn1521-3773-
dc.identifier.artne202402841-
dc.description.validate202412 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Shenzhen Science and Technology Program, ITC via Hong Kong Branch of National Precious Metals Material Engineering Research Centre (NPMM); City University of Hong Kong, National Natural Science Foundation ofChina/Research Grant Council of Hong Kong Joint Research Scheme; National Natural Science Foundation of China/Research Grants Council of Hong Kong Collaborative Research Scheme; Natural ScienceFoundation of Guangdong Province; Research Centre for Carbon-Strategic Catalysis (RC-CSC); Research Institute for Smart Energy (RISE); Research Institute for Intelligent Wearable Systems (RI-IWEAR) of the Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Controlled_Synthesis_Unconventional.pdf6.8 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

29
Citations as of Apr 14, 2025

Downloads

8
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

43
Citations as of Sep 12, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.