Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110498
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorResearch Institute for Intelligent Wearable Systems-
dc.contributorSchool of Fashion and Textiles-
dc.creatorLi, Wen_US
dc.creatorLuo, Cen_US
dc.creatorFu, Jen_US
dc.creatorYang, Jen_US
dc.creatorZhou, Xen_US
dc.creatorTang, Jen_US
dc.creatorMehdi, BLen_US
dc.date.accessioned2024-12-17T00:43:17Z-
dc.date.available2024-12-17T00:43:17Z-
dc.identifier.issn1613-6810en_US
dc.identifier.urihttp://hdl.handle.net/10397/110498-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.rights© 2024 The Authors. Small published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.en_US
dc.rightsThe following publication W. Li, C. Luo, J. Fu, J. Yang, X. Zhou, J. Tang, B. L. Mehdi, Fracture Resistant CrSi2-Doped Silicon Nanoparticle Anodes for Fast-Charge Lithium–Ion Batteries. Small 2024, 20, 2308304 is available at https://doi.org/10.1002/smll.202308304.en_US
dc.subjectCrack formationen_US
dc.subjectCrSi 2 dopingen_US
dc.subjectFast chargeen_US
dc.subjectIn situ TEMen_US
dc.subjectSilicon anodeen_US
dc.titleFracture resistant CrSi₂-doped silicon nanoparticle anodes for fast-charge lithium-ion batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume20en_US
dc.identifier.issue24en_US
dc.identifier.doi10.1002/smll.202308304en_US
dcterms.abstractLithium–ion batteries (LIBs) has been developed over the last three decades. Increased amount of silicon (Si) is added into graphite anode to increase the energy density of LIBs. However, the amount of Si is limited, due to its structural instability and poor electronic conductivity so a novel approach is needed to overcome these issues. In this work, the synthesized chromium silicide (CrSi2) doped Si nanoparticle anode material achieves an initial capacity of 1729.3 mAh g−1 at 0.2C and retains 1085 mAh g−1 after 500 cycles. The new anode also shows fast charge capability due to the enhanced electronic conductivity provided by CrSi2 dopant, delivering a capacity of 815.9 mAh g−1 at 1C after 1000 cycles with a capacity degradation rate of <0.05% per cycle. An in situ transmission electron microscopy is used to study the structural stability of the CrSi2-doped Si, indicating that the high control of CrSi2 dopant prevents the fracture of Si during lithiation and results in long cycle life. Molecular dynamics simulation shows that CrSi2 doping optimizes the crack propagation path and dissipates the fracture energy. In this work a comprehensive information is provided to study the function of metal ion doping in electrode materials.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSmall, 12 June 2024, v. 20, no. 24, 2308304en_US
dcterms.isPartOfSmallen_US
dcterms.issued2024-06-12-
dc.identifier.scopus2-s2.0-85183740744-
dc.identifier.eissn1613-6829en_US
dc.identifier.artn2308304en_US
dc.description.validate202412 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextUK Faraday Institution; National Natural Science Foundation of China; HKPolyUen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Fracture_Resistant_CrSi2.pdf3.72 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

23
Citations as of Apr 14, 2025

Downloads

6
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

6
Citations as of Sep 12, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.