Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110491
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorTang, B-
dc.creatorWei, Q-
dc.creatorWang, S-
dc.creatorLiu, H-
dc.creatorMou, N-
dc.creatorLiu, Q-
dc.creatorWu, Y-
dc.creatorPortniagin, AS-
dc.creatorKershaw, SV-
dc.creatorGao, X-
dc.creatorLi, M-
dc.creatorRogach, AL-
dc.date.accessioned2024-12-17T00:43:13Z-
dc.date.available2024-12-17T00:43:13Z-
dc.identifier.issn1613-6810-
dc.identifier.urihttp://hdl.handle.net/10397/110491-
dc.language.isoenen_US
dc.publisherWiley-VCH Verlag GmbH & Co. KGaAen_US
dc.rights© 2024 The Authors. Small published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication B. Tang, Q. Wei, S. Wang, H. Liu, N. Mou, Q. Liu, Y. Wu, A. S. Portniagin, S. V. Kershaw, X. Gao, M. Li, A. L. Rogach, Ultraviolet Circularly Polarized Luminescence in Chiral Perovskite Nanoplatelet-Molecular Hybrids: Direct Binding Versus Efficient Triplet Energy Transfer. Small 2024, 20, 2311639 is available at https://doi.org/10.1002/smll.202311639.en_US
dc.subjectChirality transferen_US
dc.subjectMetal halide perovskite nanoplateletsen_US
dc.subjectNanocrystal-molecular hybridsen_US
dc.subjectTriplet energy transferen_US
dc.subjectUV circularly polarized luminescenceen_US
dc.titleUltraviolet circularly polarized luminescence in chiral perovskite nanoplatelet-molecular hybrids : direct binding versus efficient triplet energy transferen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume20-
dc.identifier.issue25-
dc.identifier.doi10.1002/smll.202311639-
dcterms.abstractThe development of ultraviolet circularly polarized light (UVCPL) sources has the potential to benefit plenty of practical applications but remains a challenge due to limitations in available material systems and a limited understanding of the excited state chirality transfer. Herein, by constructing hybrid structures of the chiral perovskite CsPbBr3 nanoplatelets and organic molecules, excited state chirality transfer is achieved, either via direct binding or triplet energy transfer, leading to efficient UVCPL emission. The underlying photophysical mechanisms of these two scenarios are clarified by comprehensive optical studies. Intriguingly, UVCPL realized via the triple energy transfer, followed by the triplet–triplet annihilation upconversion processes, demonstrates a 50-fold enhanced dissymmetry factor glum. Furthermore, stereoselective photopolymerization of diacetylene monomer is demonstrated by using such efficient UVCPL. This study provides both novel insights and a practical approach for realizing UVCPL, which can also be extended to other material systems and spectral regions, such as visible and near-infrared.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSmall, 19 June 2024, v. 20, no. 25, 2311639-
dcterms.isPartOfSmall-
dcterms.issued2024-06-19-
dc.identifier.scopus2-s2.0-85181962070-
dc.identifier.eissn1613-6829-
dc.identifier.artn2311639-
dc.description.validate202412 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextPolyU; National Natural Science Foundation of China; Hong Kong Innovation and Technology Fund; Centre for Functional Photonics (CFP) of City University of Hong Kongen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tang_Ultraviolet_Circularly_Polarized.pdf2.31 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

25
Citations as of Apr 14, 2025

Downloads

9
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

10
Citations as of Sep 12, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.