Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110466
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorChen, Jen_US
dc.creatorQiu, Len_US
dc.creatorZhu, Zen_US
dc.creatorSun, Nen_US
dc.creatorHuang, Hen_US
dc.creatorIp, WHen_US
dc.creatorYung, KLen_US
dc.date.accessioned2024-12-17T00:43:01Z-
dc.date.available2024-12-17T00:43:01Z-
dc.identifier.urihttp://hdl.handle.net/10397/110466-
dc.language.isoenen_US
dc.publisherTaylor & Francis Inc.en_US
dc.rights© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.en_US
dc.rightsThe following publication Chen, J., Qiu, L., Zhu, Z., Sun, N., Huang, H., Ip, W. H., & Yung, K. L. (2024). The WIPI Model Based on Multi-Scale Local Contrast Post-Processing for Infrared Small Target Detection. Canadian Journal of Remote Sensing, 50(1) is available at https://doi.org/10.1080/07038992.2024.2305913.en_US
dc.titleThe WIPI model based on multi-scale local contrast post-processing for infrared small target detectionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume50en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1080/07038992.2024.2305913en_US
dcterms.abstractAccording to the infrared patch image (IPI) model theory, the infrared image background has a low rank and the target is sparse. The low-rank model can be used to separate the background and identify the target. However, in a noisy environment, the recognition effect will be affected. The higher the noise, the harder it would be to detect a small target. The residual strong fault and background edges could reduce the detection rate and increase false alarms. The traditional IPI model is adaptable to the background with the lower noise. This paper combines weighted nuclear norm minimization (WNNM) optimization with sparse representation based on the local IPI model. The background details are described more prominently by improving the nuclear norm weighting factor. The target is much easier to detect under the specific bright clouds and ground buildings background with high noise. At the same time, post-processing with image local contrast analysis is performed to compare traditional spatial filtering and local infrared patch image model algorithms. Our method has a good suppression effect on complex noise backgrounds and achieves a higher signal to clutter ratio gain (SCRG). It could also improve the target detection rate and reduce false alarms.en_US
dcterms.abstractSelon la théorie du modèle de correction des images infrarouges (IPI), l’arrière-plan de l’image infrarouge a un rang faible et la cible est clairsemée. Le modèle du rang inférieur peut être utilisé pour séparer l’arrière-plan et reconnaître la cible. Cependant, dans un environnement bruité, la reconnaissance de la cible sera affectée. Plus l’arrière-plan est bruité, plus il sera difficile de détecter une petite cible. Les erreurs résiduelles importantes et les bords d’arrière-plan peuvent réduire le taux de détection et augmenter les fausses alarmes. Le modèle IPI traditionnel est adaptable à un arrière-plan moins bruité. Cet article combine l’optimisation de la minimisation pondérée des normes nucléaires (WNNM) avec une représentation parcimonieuse basée sur le modèle local de l’IPI. Les détails de l’arrière-plan sont décrits de manière plus évidente en améliorant le facteur de pondération de la norme nucléaire. La cible est beaucoup plus facile à détecter sous des nuages lumineux et un fond de bâtiments bruité. Dans le même temps, un post-traitement avec une analyse du contraste local de l’image est effectué pour comparer les algorithmes traditionnels de filtrage spatial et notre modèle de correction des images infrarouges. Notre méthode a un bon effet de suppression sur les bruits de fond complexes et permet d’obtenir un rapport signal/bruit plus élevé. Elle pourrait également améliorer le taux de détection de la cible et réduire les fausses alarmes.en_US
dcterms.accessRightsopen accessen_US
dcterms.alternativeLe modèle WIPI basé sur le post-traitement du contraste local multi-échelle pour la détection de petites cibles sur des images infrarougesen_US
dcterms.bibliographicCitationCanadian journal of remote sensing, 2024, v. 50, no. 1, 2305913en_US
dcterms.isPartOfCanadian journal of remote sensingen_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85186891015-
dc.identifier.eissn1712-7971en_US
dc.identifier.artn2305913en_US
dc.description.validate202412 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextYouth Innovation Promition Association of the Chinese Academy of Sciencesen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_WIPI_Model_Based.pdf3.44 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

20
Citations as of Apr 14, 2025

Downloads

4
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.