Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110416
DC FieldValueLanguage
dc.contributorDepartment of Data Science and Artificial Intelligenceen_US
dc.creatorZhang, Xen_US
dc.creatorCao, Men_US
dc.creatorGong, Yen_US
dc.creatorWu, Xen_US
dc.creatorDong, Xen_US
dc.creatorGuo, Yen_US
dc.creatorZhao, Len_US
dc.creatorZhang, Cen_US
dc.date.accessioned2024-12-12T00:59:11Z-
dc.date.available2024-12-12T00:59:11Z-
dc.identifier.issn0893-6080en_US
dc.identifier.urihttp://hdl.handle.net/10397/110416-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectMulti-scale region informationen_US
dc.subjectMutual reinforcementen_US
dc.subjectNeural networksen_US
dc.subjectSpatial–temporal systemsen_US
dc.subjectUrban flow predictionen_US
dc.titleEnhancing urban flow prediction via mutual reinforcement with multi-scale regional informationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume182en_US
dc.identifier.doi10.1016/j.neunet.2024.106900en_US
dcterms.abstractIntelligent Transportation Systems (ITS) are essential for modern urban development, with urban flow prediction being a key component. Accurate flow prediction optimizes routes and resource allocation, benefiting residents, businesses, and the environment. However, few methods address the spatial–temporal heterogeneity of urban flows. Existing methods typically capture spatial features solely from urban flows, but spatial feature sensitivity becomes a bottleneck when dealing with small or noisy datasets. To address this issue, we propose a method for urban flow prediction via mutual reinforcement with multi-scale regional information (MR-UFP). Firstly, we employ spatial–temporal random masking and spatial–temporal contrastive learning pre-training to directly mine spatial–temporal heterogeneity from historical flow data. Secondly, we transform the task of spatial feature extraction and embedding for urban flow prediction into a mutual reinforcement task by multi-scale region classification auxiliary task. The adaptive environment fusion module and real-time graph processing dynamically correlate regional and environmental features during flow prediction. To balance the mutual reinforcement of the two tasks, we design a joint loss function to optimize feature embedding and feedback correction, ensuring robust and accurate urban flow prediction. Extensive experiments on two real-world datasets demonstrate that MR-UFP outperforms baseline models, showcasing its robustness and effectiveness even with minimal data.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationNeural networks, Feb. 2025, v. 182, 106900en_US
dcterms.isPartOfNeural networksen_US
dcterms.issued2025-02-
dc.identifier.eissn1879-2782en_US
dc.identifier.artn106900en_US
dc.description.validate202412 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3318, a3866-
dc.identifier.SubFormID49921, 51467-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2027-02-28en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2027-02-28
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

26
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.