Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110379
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorMainland Development Officeen_US
dc.creatorMao, Jen_US
dc.creatorHe, Jen_US
dc.creatorIo, WFen_US
dc.creatorGuo, Fen_US
dc.creatorWu, Zen_US
dc.creatorYang, Men_US
dc.creatorHao, Jen_US
dc.date.accessioned2024-12-03T08:02:53Z-
dc.date.available2024-12-03T08:02:53Z-
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://hdl.handle.net/10397/110379-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2024 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © 2024 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsnano.4c07397.en_US
dc.subjectFerroelectricityen_US
dc.subjectMoS2, nanocone arraysen_US
dc.subjectNanocone arraysen_US
dc.subjectPiezoelectric coefficienten_US
dc.subjectStrain engineeringen_US
dc.titleStrain-engineered ferroelectricity in 2H bilayer MoS₂en_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage30360en_US
dc.identifier.epage30367en_US
dc.identifier.volume18en_US
dc.identifier.issue44en_US
dc.identifier.doi10.1021/acsnano.4c07397en_US
dcterms.abstractThe exploration of two-dimensional (2D) materials exhibiting out-of-plane ferroelectric and piezoelectric properties through interlayer twist/translation or strain, known as sliding ferroelectricity, has become a focal point in the quest for low-power electronic devices, capitalizing on weak van der Waals interactions. Herein, we delve into the behavior of strained bilayer molybdenum disulfide (2L-MoS2) transferred onto a nanocone-patterned substrate. An intriguing observation is the emergence of unexpected vertical ferroelectricity in MoS2, irrespective of whether it was prepared using chemical vapor deposition or mechanical exfoliation from the bulk crystal. Such an observation underscores the versatility and reproducibility of the emerging ferroelectricity across different preparation methods. Furthermore, the piezoelectric coefficients recorded are exceptionally high, with the values of 37.54 and 24.80 pm V–1 for monolayer and bilayer MoS2, respectively, outperforming most currently discovered 2D piezoelectrics. The presence of room-temperature out-of-plane ferroelectricity in strained 2L-MoS2 is confirmed through first-principles calculations and piezoresponse force microscopy. This ferroelectric behavior can be attributed to the symmetry breaking and interlayer sliding within the strained 2L-MoS2 structure. Our findings not only deepen the understanding of ferroelectricity in 2D materials but also offer insights for the design of 2D ferroelectrics, thereby enabling diverse functionalities and applications in ferroelectricity.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS nano, 5 Nov. 2024, v. 18, no. 44, p. 30360-30367en_US
dcterms.isPartOfACS nanoen_US
dcterms.issued2024-11-05-
dc.identifier.eissn1936-086Xen_US
dc.description.validate202412 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3306-
dc.identifier.SubFormID49906-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China No. 52233014; PolyU Grant 1-CE0H; PolyU Grant 1-CD7Ven_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Mao_Strain-Engineered_Ferroelectricity_2H.pdfPre-Published version4.61 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

33
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.