Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110366
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorVijayakumar, H-
dc.creatorZhao, DZ-
dc.creatorLan, JL-
dc.creatorZhao, WJ-
dc.creatorTian, DX-
dc.creatorZhang, YJ-
dc.date.accessioned2024-12-03T03:34:11Z-
dc.date.available2024-12-03T03:34:11Z-
dc.identifier.issn1474-6670-
dc.identifier.urihttp://hdl.handle.net/10397/110366-
dc.description3rd Modeling, Estimation and Control Conference MECC 2023: Lake Tahoe, USA, October 2-5, 2023en_US
dc.language.isoenen_US
dc.publisherIFAC Secretariaten_US
dc.rightsCopyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)en_US
dc.rightsThe following publication Vijayakumar, H., Zhao, D., Lan, J., Zhao, W., Tian, D., & Zhang, Y. (2023). A Safe Decision Making Framework for Automated Vehicle Navigation among Human Drivers. IFAC-PapersOnLine, 56(2), 4910-4915 is available at https://dx.doi.org/10.1016/j.ifacol.2023.10.1263.en_US
dc.subjectAutomated vehiclesen_US
dc.subjectDecision makingen_US
dc.subjectMotion predictionen_US
dc.subjectUncertaintiesen_US
dc.subjectPlanningen_US
dc.titleA safe decision making framework for automated vehicle navigation among human driversen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage4910-
dc.identifier.epage4915-
dc.identifier.volume56-
dc.identifier.issue2-
dc.identifier.doi10.1016/j.ifacol.2023.10.1263-
dcterms.abstractIn the near future, automated vehicles (AVs) will have to interact closely with Human-driven vehicles (HDVs). This work proposes an integrated decision-making framework that considers HDVs motion, a feasibility check, and planning. A learning-based encoder-decoder Long Short-Term Memory is used for HDV motion prediction. An error ellipse is used to capture the uncertainty from the learning-based model. A feasibility check is carried out to confirm the existence of a lane change trajectory from the given target vehicle's future position. The results from the feasibility check decide the action of AV. This work uses a lower-order parametric curve for path planning combined with an efficient trapezoidal acceleration-based velocity planner. Simulation results show that the proposed method guarantees a collision-free path for a lane changing scenario, given the lead vehicle position.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIFAC-PapersOnLine, 2023, v. 56, no. 2, p. 4910-4915-
dcterms.isPartOfIFAC-PapersOnLine-
dcterms.issued2023-
dc.identifier.isiWOS:001196709200292-
dc.relation.conferenceModeling, Estimation and Control Conference [MECC]-
dc.identifier.eissn2405-8963-
dc.description.validate202412 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2405896323016671-main.pdf1.05 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

32
Citations as of Apr 14, 2025

Downloads

12
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.