Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110247
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorJiang, Jen_US
dc.creatorSun, Hen_US
dc.creatorChen, Xen_US
dc.date.accessioned2024-12-02T02:30:12Z-
dc.date.available2024-12-02T02:30:12Z-
dc.identifier.issn1052-6234en_US
dc.identifier.urihttp://hdl.handle.net/10397/110247-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2024 Society for Industrial and Applied Mathematicsen_US
dc.rightsCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
dc.rightsThe following publication Jiang, J., Sun, H., & Chen, X. (2024). Data-Driven Distributionally Robust Multiproduct Pricing Problems under Pure Characteristics Demand Models. SIAM Journal on Optimization, 34(3), 2917-2942 is available at https://doi.org/10.1137/23m1585131.en_US
dc.subjectData-drivenen_US
dc.subjectDistributional robustnessen_US
dc.subjectMathematical program with complementarity constraintsen_US
dc.subjectPure characteristicsen_US
dc.subjectStochastic optimizationen_US
dc.titleData-driven distributionally robust multiproduct pricing problems under pure characteristics demand modelsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2917en_US
dc.identifier.epage2942en_US
dc.identifier.volume34en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1137/23M158513en_US
dcterms.abstractThis paper considers a multiproduct pricing problem under pure characteristics demand models when the probability distribution of the random parameter in the problem is uncertain. We formulate this problem as a distributionally robust optimization (DRO) problem based on a constructive approach to estimating pure characteristics demand models with pricing by Pang, Su, and Lee. In this model, the consumers’ purchase decision is to maximize their utility. We show that the DRO problem is well-defined, and the objective function is upper semicontinuous by using an equivalent hierarchical form. We also use the data-driven approach to analyze the DRO problem when the ambiguity set, i.e., a set of probability distributions that contains some exact information of the underlying probability distribution, is given by a general moment-based case. We give convergence results as the data size tends to infinity and analyze the quantitative statistical robustness in view of the possible contamination of driven data. Furthermore, we use the Lagrange duality to reformulate the DRO problem as a mathematical program with complementarity constraints, and give a numerical procedure for finding a global solution of the DRO problem under certain specific settings. Finally, we report numerical results that validate the effectiveness and scalability of our approach for the distributionally robust multiproduct pricing problem.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on optimization, 2024, v. 34, no. 3, p. 2917-2942en_US
dcterms.isPartOfSIAM journal on optimizationen_US
dcterms.issued2024-
dc.identifier.eissn1095-7189en_US
dc.description.validate202411 bcchen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera3301-
dc.identifier.SubFormID49898-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic University Post-doctoral Fellow Scheme; National Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
23m1585131.pdf629.11 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

28
Citations as of Apr 14, 2025

Downloads

48
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.