Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110207
PIRA download icon_1.1View/Download Full Text
Title: Improving lead phytoremediation using endophytic bacteria isolated from the pioneer plant Ageratina adenophora (Spreng.) from a mining area
Authors: Li, Q
Yao, S
Wen, H
Li, W
Jin, L 
Huang, X
Issue Date: Apr-2024
Source: Toxics, Apr. 2024, v. 12, no. 4, 291
Abstract: This study aimed to isolate and characterise endophytic bacteria from the pioneer plant Ageratina adenophora in a mining area. Seven strains of metal-resistant endophytic bacteria that belong to five genera were isolated from the roots of A. adenophora. These strains exhibited various plant growth-promoting (PGP) capabilities. Sphingomonas sp. ZYG-4, which exhibited the ability to secrete indoleacetic acid (IAA; 53.2 ± 8.3 mg·L−1), solubilize insoluble inorganic phosphates (Phosphate solubilization; 11.2 ± 2.9 mg·L−1), and regulate root ethylene levels (1-aminocyclopropane-1-carboxylic acid deaminase activity; 2.87 ± 0.19 µM α-KB·mg−1·h−1), had the highest PGP potential. Therefore, Sphingomonas sp. ZYG-4 was used in a pot experiment to study its effect on the biomass and Pb uptake of both host (Ageratina adenophora) and non-host (Dysphania ambrosioides) plants. Compared to the uninoculated control, Sphingomonas sp. ZYG-4 inoculation increased the biomass of shoots and roots by 59.4% and 144.4% for A. adenophora and by 56.2% and 57.1% for D. ambrosioides, respectively. In addition, Sphingomonas sp. ZYG-4 inoculation enhanced Pb accumulation in the shoot and root by 268.9% and 1187.3% for A. adenophora, and by 163.1% and 343.8% for D. ambrosioides, respectively, compared to plants without bacterial inoculation. Our research indicates that endophytic bacteria are promising candidates for enhancing plant growth and facilitating microbe-assisted phytoremediation in heavy metal-contaminated soil.
Keywords: Heavy metals
Phytoremediation
Plant growth-promoting bacteria
Sphingomonassp
Publisher: MDPI AG
Journal: Toxics 
EISSN: 2305-6304
DOI: 10.3390/toxics12040291
Rights: Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
The following publication Li Q, Yao S, Wen H, Li W, Jin L, Huang X. Improving Lead Phytoremediation Using Endophytic Bacteria Isolated from the Pioneer Plant Ageratina adenophora (Spreng.) from a Mining Area. Toxics. 2024; 12(4):291 is available at https://doi.org/10.3390/toxics12040291.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
toxics-12-00291.pdf1.66 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

19
Citations as of Apr 14, 2025

Downloads

8
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

4
Citations as of Sep 12, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.