Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/110057
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.creatorQi, K-
dc.creatorOwusu, EK-
dc.creatorSiu, MFF-
dc.creatorChan, PCA-
dc.date.accessioned2024-11-20T07:31:06Z-
dc.date.available2024-11-20T07:31:06Z-
dc.identifier.issn2090-4479-
dc.identifier.urihttp://hdl.handle.net/10397/110057-
dc.language.isoenen_US
dc.publisherAin Shams University * Faculty of Engineeringen_US
dc.rights© 2024 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Qi, K., Owusu, E. K., Francis Siu, M.-F., & Albert Chan, P.-C. (2024). A systematic review of construction labor productivity studies: Clustering and analysis through hierarchical latent dirichlet allocation. Ain Shams Engineering Journal, 15(9), 102896 is available at https://doi.org/10.1016/j.asej.2024.102896.en_US
dc.subjectConstruction labor productivityen_US
dc.subjectHierarchical latent Dirichlet allocationen_US
dc.subjectInformation extractionen_US
dc.subjectResearch trendsen_US
dc.subjectText miningen_US
dc.subjectTopic modelingen_US
dc.titleA systematic review of construction labor productivity studies : clustering and analysis through hierarchical latent dirichlet allocationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume15-
dc.identifier.issue9-
dc.identifier.doi10.1016/j.asej.2024.102896-
dcterms.abstractThe field of construction labor productivity (CLP) has witnessed a remarkable growth in scholarly research, presenting both opportunities and challenges due to the diverse focus and exponential increase in literature. This study aims to systematically review the burgeoning body of CLP literature, proposing an approach to tackle the complexity of the domain. Utilizing the text mining technique of Hierarchical Latent Dirichlet Allocation (HLDA), an automatic clustering method was developed to analyze and categorize the corpus of CLP research. The methodology involved a comprehensive extraction of 591 scholarly articles from scientific databases. These articles, spanning from 1973 to 2023, were subjected to HLDA topic modeling. This process generated a detailed three-layer, tree-like topic model, comprising three primary topics and 26 sub-topics, organized through the nested Chinese restaurant process (nCRP). The study advances theoretical and practical understanding by applying hierarchical topic modeling to construction project management literature and identifying key industry challenges.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAin Shams engineering journal, Sept 2024, v. 15, no. 9, 102896-
dcterms.isPartOfAin Shams engineering journal-
dcterms.issued2024-09-
dc.identifier.scopus2-s2.0-85195824016-
dc.identifier.eissn2090-4495-
dc.identifier.artn102896-
dc.description.validate202411 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.