Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109963
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.creatorYang, Y-
dc.creatorHu, P-
dc.creatorShen, J-
dc.creatorCheng, H-
dc.creatorAn, Z-
dc.creatorLiu, X-
dc.date.accessioned2024-11-20T07:30:35Z-
dc.date.available2024-11-20T07:30:35Z-
dc.identifier.urihttp://hdl.handle.net/10397/109963-
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2024 The Author(s). Published by Elsevier B.V. on behalf of Shandong University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Yang, Y., Hu, P., Shen, J., Cheng, H., An, Z., & Liu, X. (2024). Privacy-preserving human activity sensing: A survey. High-Confidence Computing, 4(1), 100204 is available at https://doi.org/10.1016/j.hcc.2024.100204.en_US
dc.subjectActivity sensing algorithmsen_US
dc.subjectHuman activity sensingen_US
dc.subjectHuman sensorsen_US
dc.subjectPrivacy protectionen_US
dc.subjectPrivacy-preserving sensingen_US
dc.titlePrivacy-preserving human activity sensing : a surveyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume4-
dc.identifier.issue1-
dc.identifier.doi10.1016/j.hcc.2024.100204-
dcterms.abstractWith the prevalence of various sensors and smart devices in people’s daily lives, numerous types of information are being sensed. While using such information provides critical and convenient services, we are gradually exposing every piece of our behavior and activities. Researchers are aware of the privacy risks and have been working on preserving privacy while sensing human activities. This survey reviews existing studies on privacy-preserving human activity sensing. We first introduce the sensors and captured private information related to human activities. We then propose a taxonomy to structure the methods for preserving private information from two aspects: individual and collaborative activity sensing. For each of the two aspects, the methods are classified into three levels: signal, algorithm, and system. Finally, we discuss the open challenges and provide future directions.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationHigh-confidence computing, Mar. 2024, v. 4, no. 1, 100204-
dcterms.isPartOfHigh-confidence computing-
dcterms.issued2024-03-
dc.identifier.scopus2-s2.0-85186579091-
dc.identifier.eissn2667-2952-
dc.identifier.artn100204-
dc.description.validate202411 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key Research and Development Program of China; National Natural Science Foundation of China; Shandong Science Fund for Excellent Young Scholars, China; Natural Science Foundation of Shandong, China; Lingnan University (LU), China; Lam Woo Research Fund at LU, Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2667295224000072-main.pdf628.9 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

25
Citations as of Mar 3, 2025

Downloads

9
Citations as of Mar 3, 2025

SCOPUSTM   
Citations

5
Citations as of Mar 6, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.