Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109758
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorXu, Zen_US
dc.creatorChen, Qen_US
dc.creatorHan, Xen_US
dc.creatorWang, Jen_US
dc.creatorWang, Pen_US
dc.creatorZheng, Ten_US
dc.creatorPang, SYen_US
dc.creatorWang, Jen_US
dc.creatorLi, Hen_US
dc.creatorXia, Zen_US
dc.creatorHao, Jen_US
dc.date.accessioned2024-11-14T07:51:57Z-
dc.date.available2024-11-14T07:51:57Z-
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://hdl.handle.net/10397/109758-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2024 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © 2024 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.nanolett.4c03410.en_US
dc.subjectElectrocatalysisen_US
dc.subjectMetal−organic frameworksen_US
dc.subjectPulsed laser shocken_US
dc.subjectTransition metal phosphide nanoparticlesen_US
dc.subjectUltrafast synthesisen_US
dc.titleUltrafast synthesis of transition metal phosphides in air via pulsed laser shocken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage12254en_US
dc.identifier.epage12262en_US
dc.identifier.volume24en_US
dc.identifier.issue39en_US
dc.identifier.doi10.1021/acs.nanolett.4c03410en_US
dcterms.abstractTransition metal phosphide nanoparticles (TMP NPs) represent a promising class of nanomaterials in the field of energy; however, a universal, time-saving, energy-efficient, and scalable synthesis method is currently lacking. Here, a facile synthesis approach is first introduced using a pulsed laser shock (PLS) process mediated by metal–organic frameworks, free of any inert gas protection, enabling the synthesis of diverse TMP NPs. Additionally, through thermodynamic calculations and experimental validation, the phase selection and competition behavior between phosphorus and oxygen have been elucidated, dictated by the redox potential and electronegativity. The resulting composites exhibit a balanced performance and extended durability. When employed as electrocatalysts for overall water splitting, the as-constructed electrolyzer achieves a low cell voltage of 1.54 V at a current density of 10 mA cm–2. This laser method for phosphide synthesis provides clear guidelines and holds potential for the preparation of nanomaterials applicable in catalysis, energy storage, biosensors, and other fields.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano letters, 2 Oct. 2024, v. 24, no. 39, p. 12254-12262en_US
dcterms.isPartOfNano lettersen_US
dcterms.issued2024-10-02-
dc.identifier.eissn1530-6992en_US
dc.description.validate202411 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera3287-
dc.identifier.SubFormID49880-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Natural Science Foundation of Chongqing; Hong Kong Scholars Program; PolyU granten_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xu_Ultrafast_Synthesis_Transition.pdfPre-Published version2.76 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

33
Citations as of Apr 14, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.