Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109758
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorXu, Zen_US
dc.creatorChen, Qen_US
dc.creatorHan, Xen_US
dc.creatorWang, Jen_US
dc.creatorWang, Pen_US
dc.creatorZheng, Ten_US
dc.creatorPang, SYen_US
dc.creatorWang, Jen_US
dc.creatorLi, Hen_US
dc.creatorXia, Zen_US
dc.creatorHao, Jen_US
dc.date.accessioned2024-11-14T07:51:57Z-
dc.date.available2024-11-14T07:51:57Z-
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://hdl.handle.net/10397/109758-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectElectrocatalysisen_US
dc.subjectMetal−organic frameworksen_US
dc.subjectPulsed laser shocken_US
dc.subjectTransition metal phosphide nanoparticlesen_US
dc.subjectUltrafast synthesisen_US
dc.titleUltrafast synthesis of transition metal phosphides in air via pulsed laser shocken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage12254en_US
dc.identifier.epage12262en_US
dc.identifier.volume24en_US
dc.identifier.issue39en_US
dc.identifier.doi10.1021/acs.nanolett.4c03410en_US
dcterms.abstractTransition metal phosphide nanoparticles (TMP NPs) represent a promising class of nanomaterials in the field of energy; however, a universal, time-saving, energy-efficient, and scalable synthesis method is currently lacking. Here, a facile synthesis approach is first introduced using a pulsed laser shock (PLS) process mediated by metal–organic frameworks, free of any inert gas protection, enabling the synthesis of diverse TMP NPs. Additionally, through thermodynamic calculations and experimental validation, the phase selection and competition behavior between phosphorus and oxygen have been elucidated, dictated by the redox potential and electronegativity. The resulting composites exhibit a balanced performance and extended durability. When employed as electrocatalysts for overall water splitting, the as-constructed electrolyzer achieves a low cell voltage of 1.54 V at a current density of 10 mA cm–2. This laser method for phosphide synthesis provides clear guidelines and holds potential for the preparation of nanomaterials applicable in catalysis, energy storage, biosensors, and other fields.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationNano letters, 2 Oct. 2024, v. 24, no. 39, p. 12254-12262en_US
dcterms.isPartOfNano lettersen_US
dcterms.issued2024-10-02-
dc.identifier.eissn1530-6992en_US
dc.description.validate202411 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera3287-
dc.identifier.SubFormID49880-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Natural Science Foundation of Chongqing; Hong Kong Scholars Program; PolyU granten_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2025-09-20en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2025-09-20
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

13
Citations as of Nov 24, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.