Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109677
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.creatorXiao, R-
dc.creatorZhu, L-
dc.creatorLiao, J-
dc.creatorWu, X-
dc.creatorGong, H-
dc.creatorHuang, J-
dc.creatorLi, P-
dc.creatorSheng, B-
dc.creatorChen, S-
dc.date.accessioned2024-11-08T06:11:13Z-
dc.date.available2024-11-08T06:11:13Z-
dc.identifier.issn2329-423X-
dc.identifier.urihttp://hdl.handle.net/10397/109677-
dc.language.isoenen_US
dc.publisherSPIE - International Society for Optical Engineeringen_US
dc.rights© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.10.3.035003]en_US
dc.rightsThe following publication Rong, X., Lei, Z., Jiangshan, L., Xinglong, W., Hui, G., Jin, H., Ping, L., Bin, S., & Shangbin, C. (2023). DDeep3M+: adaptive enhancement powered weakly supervised learning for neuron segmentation. Neurophotonics, 10(3), 035003 is available at https://doi.org/10.1117/1.NPh.10.3.035003.en_US
dc.subjectConvolutional neural networken_US
dc.subjectHessian matrixen_US
dc.subjectImage segmentationen_US
dc.subjectNeuron segmentationen_US
dc.subjectWeakly supervised deep learningen_US
dc.titleDDeep3M+ : adaptive enhancement powered weakly supervised learning for neuron segmentationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage035003-1-
dc.identifier.epage035003-18-
dc.identifier.volume10-
dc.identifier.issue3-
dc.identifier.doi10.1117/1.NPh.10.3.035003-
dcterms.abstractSignificance: Robust segmentations of neurons greatly improve neuronal population reconstruction, which could support further study of neuron morphology for brain research.-
dcterms.abstractAim: Precise segmentation of 3D neuron structures from optical microscopy (OM) images is crucial to probe neural circuits and brain functions. However, the high noise and low contrast of images make neuron segmentation challenging. Convolutional neural networks (CNNs) can provide feasible solutions for the task but they require large manual labels for training. Labor-intensive labeling is highly expensive and heavily limits the algorithm generalization.-
dcterms.abstractApproach: We devise a weakly supervised learning framework Docker-based deep network plus (DDeep3M+) for neuron segmentation without any manual labeling. A Hessian analysis based adaptive enhancement filter is employed to generate pseudo-labels for segmenting neuron images. The automated segmentation labels are input for training a DDeep3M to extract neuronal features. We mine more undetected weak neurites from the probability map based on neuronal structures, thereby modifying the pseudo-labels. We iteratively refine the pseudo-labels and retrain the DDeep3M model with the pseudo-labels to obtain a final segmentation result.-
dcterms.abstractResults: The proposed method achieves promising results with the F1 score of 0.973, which is close to that of the CNN model with manual labels and superior to several segmentation algorithms.-
dcterms.abstractConclusions: We propose an accurate weakly supervised neuron segmentation method. The high precision results achieved on 3D OM datasets demonstrate the superior generalization of our DDeep3M+.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNeurophotonics, July 2023, v. 10, no. 3, 035003, p. 035003-1 - 035003-18-
dcterms.isPartOfNeurophotonics-
dcterms.issued2023-07-
dc.identifier.scopus2-s2.0-85173235023-
dc.identifier.eissn2329-4248-
dc.identifier.artn035003-
dc.description.validate202411 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Wuhan National Laboratory for Optoelectronicsen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
035003_1.pdf9.47 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

5
Citations as of Nov 17, 2024

Downloads

6
Citations as of Nov 17, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.