Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/109543
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Aeronautical and Aviation Engineering | - |
dc.creator | Ho, HY | - |
dc.creator | Ng, HF | - |
dc.creator | Leung, YT | - |
dc.creator | Wen, W | - |
dc.creator | Hsu, LT | - |
dc.creator | Luo, Y | - |
dc.date.accessioned | 2024-11-08T06:09:35Z | - |
dc.date.available | 2024-11-08T06:09:35Z | - |
dc.identifier.issn | 1682-1750 | - |
dc.identifier.uri | http://hdl.handle.net/10397/109543 | - |
dc.description | 12th International Symposium on Mobile Mapping Technology (MMT 2023), 24-26 May 2023, Padua, Italy | en_US |
dc.language.iso | en | en_US |
dc.publisher | Copernicus GmbH | en_US |
dc.rights | © Author(s) 2023. CC BY 4.0 License (https://creativecommons.org/licenses/by/4.0/). | en_US |
dc.rights | The following publication Ho, H.-Y., Ng, H.-F., Leung, Y.-T., Wen, W., Hsu, L.-T., and Luo, Y.: Smartphone level indoor/outdoor ubiquitous pedestrian positioning 3DMA GNSS/VINS integration using FGO, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1/W1-2023, 175–182 is available at https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-175-2023. | en_US |
dc.subject | 3DMA GNSS | en_US |
dc.subject | FGO | en_US |
dc.subject | IO | en_US |
dc.subject | Pedestrian Positioning | en_US |
dc.subject | Sensor Integration | en_US |
dc.subject | Smartphone | en_US |
dc.subject | Ubiquitous | en_US |
dc.subject | VINS | en_US |
dc.title | Smartphone level indoor/outdoor ubiquitous pedestrian positioning 3DMA GNSS/VINS integration using FGO | en_US |
dc.type | Conference Paper | en_US |
dc.identifier.spage | 175 | - |
dc.identifier.epage | 182 | - |
dc.identifier.volume | XLVIII-1/W1-2023 | - |
dc.identifier.doi | 10.5194/isprs-archives-XLVIII-1-W1-2023-175-2023 | - |
dcterms.abstract | This paper discusses ubiquitous smartphone pedestrian positioning challenges in urban canyons and GNSS-denied areas such as indoor spaces. Existing sensor-based techniques, including GNSS, INS, and VIO, have limitations that affect positioning accuracy and reliability. A machine learning-based approach is suggested to employ Support Vector Machine (SVM) to classify indoor/outdoor (IO) detection using GNSS measurement data. The proposed system integrates local estimates on VIO and 3D mapping aided (3DMA) GNSS measurements using Factor Graph Optimization (FGO) with an IO detection switch to estimate precise pose and eliminate global drift. The effectiveness of the system is evaluated through real-world experiments that produce notable outcomes. | - |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | International archives of the photogrammetry, remote sensing and spatial information sciences, 2023, v. XLVIII-1/W1-2023, p. 175-182 | - |
dcterms.isPartOf | International archives of the photogrammetry, remote sensing and spatial information sciences | - |
dcterms.issued | 2023 | - |
dc.identifier.scopus | 2-s2.0-85162129658 | - |
dc.relation.conference | International Symposium on Mobile Mapping Technology [MMT] | - |
dc.identifier.eissn | 2194-9034 | - |
dc.description.validate | 202411 bcch | - |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_Scopus/WOS | en_US |
dc.description.fundingSource | Self-funded | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | CC | en_US |
Appears in Collections: | Conference Paper |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
isprs-archives-XLVIII-1-W1-2023-175-2023.pdf | 1.22 MB | Adobe PDF | View/Open |
Page views
29
Citations as of Apr 14, 2025
Downloads
8
Citations as of Apr 14, 2025
SCOPUSTM
Citations
5
Citations as of May 29, 2025

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.