Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109543
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineering-
dc.creatorHo, HY-
dc.creatorNg, HF-
dc.creatorLeung, YT-
dc.creatorWen, W-
dc.creatorHsu, LT-
dc.creatorLuo, Y-
dc.date.accessioned2024-11-08T06:09:35Z-
dc.date.available2024-11-08T06:09:35Z-
dc.identifier.issn1682-1750-
dc.identifier.urihttp://hdl.handle.net/10397/109543-
dc.description12th International Symposium on Mobile Mapping Technology (MMT 2023), 24-26 May 2023, Padua, Italyen_US
dc.language.isoenen_US
dc.publisherCopernicus GmbHen_US
dc.rights© Author(s) 2023. CC BY 4.0 License (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Ho, H.-Y., Ng, H.-F., Leung, Y.-T., Wen, W., Hsu, L.-T., and Luo, Y.: Smartphone level indoor/outdoor ubiquitous pedestrian positioning 3DMA GNSS/VINS integration using FGO, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1/W1-2023, 175–182 is available at https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-175-2023.en_US
dc.subject3DMA GNSSen_US
dc.subjectFGOen_US
dc.subjectIOen_US
dc.subjectPedestrian Positioningen_US
dc.subjectSensor Integrationen_US
dc.subjectSmartphoneen_US
dc.subjectUbiquitousen_US
dc.subjectVINSen_US
dc.titleSmartphone level indoor/outdoor ubiquitous pedestrian positioning 3DMA GNSS/VINS integration using FGOen_US
dc.typeConference Paperen_US
dc.identifier.spage175-
dc.identifier.epage182-
dc.identifier.volumeXLVIII-1/W1-2023-
dc.identifier.doi10.5194/isprs-archives-XLVIII-1-W1-2023-175-2023-
dcterms.abstractThis paper discusses ubiquitous smartphone pedestrian positioning challenges in urban canyons and GNSS-denied areas such as indoor spaces. Existing sensor-based techniques, including GNSS, INS, and VIO, have limitations that affect positioning accuracy and reliability. A machine learning-based approach is suggested to employ Support Vector Machine (SVM) to classify indoor/outdoor (IO) detection using GNSS measurement data. The proposed system integrates local estimates on VIO and 3D mapping aided (3DMA) GNSS measurements using Factor Graph Optimization (FGO) with an IO detection switch to estimate precise pose and eliminate global drift. The effectiveness of the system is evaluated through real-world experiments that produce notable outcomes.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational archives of the photogrammetry, remote sensing and spatial information sciences, 2023, v. XLVIII-1/W1-2023, p. 175-182-
dcterms.isPartOfInternational archives of the photogrammetry, remote sensing and spatial information sciences-
dcterms.issued2023-
dc.identifier.scopus2-s2.0-85162129658-
dc.relation.conferenceInternational Symposium on Mobile Mapping Technology [MMT]-
dc.identifier.eissn2194-9034-
dc.description.validate202411 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
isprs-archives-XLVIII-1-W1-2023-175-2023.pdf1.22 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

29
Citations as of Apr 14, 2025

Downloads

8
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of May 29, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.