Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/109484
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.creatorLiang, Jen_US
dc.creatorYi, Qen_US
dc.creatorLiu, Sen_US
dc.creatorSun, Len_US
dc.creatorZhang, Xen_US
dc.creatorZeng, Hen_US
dc.creatorZhang, Len_US
dc.creatorTimofte, Ren_US
dc.creatorHuang, Yen_US
dc.creatorLiu, Sen_US
dc.creatorLi, Yen_US
dc.creatorFeng, Cen_US
dc.creatorWang, Xen_US
dc.creatorLei, Len_US
dc.creatorChen, Yen_US
dc.creatorChen, Xen_US
dc.creatorChen, Qen_US
dc.creatorChen, Jen_US
dc.creatorSun, Fen_US
dc.creatorCui, Men_US
dc.creatorHu, Zen_US
dc.creatorLiu, Jen_US
dc.creatorMa, Wen_US
dc.creatorWang, Cen_US
dc.creatorZheng, Hen_US
dc.creatorSun, Wen_US
dc.creatorChen, Zen_US
dc.creatorLuo, Zen_US
dc.creatorGustafsson, FKen_US
dc.creatorZhao, Zen_US
dc.creatorSjölund, Jen_US
dc.creatorSchön, TBen_US
dc.creatorDun, Xen_US
dc.creatorJi, Pen_US
dc.creatorXing, Yen_US
dc.creatorWang, Xen_US
dc.creatorWang, Zen_US
dc.creatorCheng, Xen_US
dc.creatorXiao, Jen_US
dc.creatorHe, Cen_US
dc.creatorWang, Xen_US
dc.creatorLiu, ZSen_US
dc.creatorMiao, Zen_US
dc.creatorYin, Zen_US
dc.creatorLiu, Men_US
dc.creatorZuo, Wen_US
dc.creatorWu, Ren_US
dc.creatorLi, Sen_US
dc.date.accessioned2024-11-01T08:04:31Z-
dc.date.available2024-11-01T08:04:31Z-
dc.identifier.isbn979-8-3503-6547-4en_US
dc.identifier.urihttp://hdl.handle.net/10397/109484-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication J. Liang et al., "NTIRE 2024 Restore Any Image Model (RAIM) in the Wild Challenge," 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 2024, pp. 6632-6640 is available at https://doi.org/10.1109/CVPRW63382.2024.00657.en_US
dc.titleNTIRE 2024 Restore Any Image Model (RAIM) in the wild challengeen_US
dc.typeConference Paperen_US
dc.identifier.spage6632en_US
dc.identifier.epage6640en_US
dc.identifier.doi10.1109/CVPRW63382.2024.00657en_US
dcterms.abstractIn this paper, we review the NTIRE 2024 challenge on Restore Any Image Model (RAIM) in the Wild. The RAIM challenge constructed a benchmark for image restoration in the wild, including real-world images with/without reference ground truth in various scenarios from real applications. The participants were required to restore the real-captured images from complex and unknown degradation, where generative perceptual quality and fidelity are desired in the restoration result. The challenge consisted of two tasks. Task one employed real referenced data pairs, where quantitative evaluation is available. Task two used unpaired images, and a comprehensive user study was conducted. The challenge attracted more than 200 registrations, where 39 of them submitted results with more than 400 submissions. Top-ranked methods improved the state-of-the-art restoration performance and obtained unanimous recognition from all 18 judges. The proposed datasets are available at https : //drive.google.com/file/d/1DqbxUoiUqkAIkExu3jZAqoElr_nu1IXb/view?usp=sharing and the homepage of this challenge is at https : //codalab.lisn.upsaclay.fr/competitions/17632.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitation2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 : Seattle, Washington, USA, 16-22 June 2024, p. 6632-6640en_US
dcterms.issued2024-
dc.identifier.scopus2-s2.0-85191602685-
dc.relation.ispartofbook2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 : Seattle, Washington, USA, 16-22 June 2024en_US
dc.relation.conferenceConference on Computer Vision and Pattern Recognition Workshops [CVPRW]-
dc.description.validate202411 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberOA_Others-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHumboldt Foundation; Meta Reality Labs; OPPO; KuaiShou; Huawei and University of Würzburg (Computer Vision Lab)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Liang_NTIRE_Restore_Image.pdfPre-Published version7.67 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

50
Citations as of Apr 14, 2025

Downloads

24
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

16
Citations as of May 29, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.